RxD and nlmixr: open-source packages for pharmacometric modelling in R

Pharmacometrics Network Benelux Presentation

Rik Schoemaker, PhD
Groningen, 29 March 2018

The nlmixr development team:
Wenping Wang, Matt Fidler, Teun Post, Richard Hooijmaijers, Mirjam Trame, Yuan Xiong, Justin Wilkins and Rik Schoemaker
RxODE is pharmacometric simulation software as an open-source R package

- Written by Wenping Wang and Matt Fidler, available on CRAN\(^1\) and GitHub\(^2\), and described in a tutorial in CPT:PSP\(^3\)
- Simulation of ODEs was already possible in R (using deSolve), but was slow and virtually impossible to code with flexible dosing history
- RxODE has rapid execution due to compilation in C
- RxODE allows fully flexible dosing history
- Stable and mature software for Windows, OS X, Linux
- Requires external compilers (provided by Rtools on Windows)

- New developments (alpha stage): parallelisation to increase speed even further

[1] CRAN: https://cran.r-project.org/web/packages/RxODE/index.html
library(RxODE)

ode1 <- "
 K12 = CL2/V;
 K21 = CL2/V2;
 d/dt(centr) = K21*periph-K12*centr-(VMAX*centr/V)/(KM+centr/V)-CL*centr/V;
 d/dt(periph) =-K21*periph+K12*centr;
 C1=centr/V;
 C2=periph/V2;
"

mod1 <- RxODE(model = ode1, modName = 'mod1')

ev <- eventTable()
ev$add.dosing(
 dose = 10,
 nbr.doses = 1,
 dosing.to = 1,
 rate = 2,
 start.time = 0
)
ev$add.sampling(seq(0,120,0.1))

Params <- c(VMAX=2000, KM=700, CL=4, CL2=3, V=70, V2=30)

Res <- as.data.frame(mod1$run(Params, ev))

xyplot(C1+C2~time, data=Res, type='l', ylab="Concentration", xlab="Time")
Single dose
Adding extra doses (expand the event table)

```r
ev$add.dosing(
  dose = 20,
  nbr.doses = 3,
  dosing.to = 1,
  dosing.interval = 15,
  rate = 2,
  start.time = 45
)
res <- as.data.frame(mod1$run(Params, ev))

xyplot(C1+C2~time, data=res, type='l', ylab="Concentration", xlab="Time")
```
Multiple dose

![Graph showing concentration over time](image-url)
library(data.table)
NMdat <- fread(file.path(datapath, "run100.csv"))
EBEs <- unique(NMdat[, .(ID, STD, VMAX, KM, CL, CL2, V, V2)])
subs <- unique(NMdat$ID)
N <- length(subs)
s = lapply(1:N, function(i) {
 params <- EBEs[ID == subs[i]]
 ev <- eventTable()
 DOSi <- NMdat[ID == subs[i] & AMT > 0]
 DOSi[, nTime := shift(TIME, 1L, type = 'lead')]
 timei <- NMdat$TIME[NMdat$ID == subs[i]]
 for (j in 1:length(DOSi$AMT)) {
 dos <- DOSi[j,]
 ev$add.dosing(dose = dos$AMT, nbr.doses = 1, dosing.to = 1,
 rate = dos$RATE, start.time = dos$TIME)
 #generate prediction time points (many points at dose and fewer at later times)
 if (is.na(dos$nTime)) {dos$nTime <- dos$TIME + 720}
 timei <- c(timei, dos$TIME + exp(seq(log(+0.01), log(dos$nTime - dos$TIME - 0.01),
 (log(dos$nTime - dos$TIME - 0.01) - log(+0.01)) / 100)))
 }
 times <- sort(unique(timei))
 ev$add.sampling(times)
 x <- as.data.table(mod1$run(params, ev))
 x[, ID := subs[i]]
 setnames(x, "C1", "IPRED")
})
df.sim = as.data.table(do.call("rbind", s))
You need to simulate before you can estimate

• With simulation covered, you can start to think about estimation
• Combine the simulation core with estimation routines and you get:

\[\text{nlmixr!}\]
nlmixr is an open-source R package

- Written by Wenping Wang and Matt Fidler, and available on GitHub and CRAN1,2:
 - builds on RxODE3
 - combined with nlme and SAEM estimation routines, provides an R package for parameter estimation in nonlinear mixed effect models
 - much, more to come (e.g. adaptive Gaussian quadrature for non-continuous data, and with FOCE-I under development)

- nlmixr is completely free and open, and does not depend on any other commercial tool such as NONMEM or Monolix

- nlmixr provides an efficient and versatile way to specify pharmacometric models (both closed-form and ODEs) and dosing scenarios, with rapid execution due to compilation in C

[1] https://github.com/nlmixrdevelopment/nlmixr
nlmixr is an open-source R package

- Models are defined using a unified user interface (UUI): common input and output structure for the various estimation algorithms
- xpose.nlmixr\(^1\) written by Justin Wilkins provides linkage to the new Xpose package\(^2\), written by Ben Guiastrennec, feeding the uniform output into a highly flexible diagnostics package
- The shinyMixR\(^3\) project management tool written by Richard Hooijmaijers and Teun Post provides an interface to nlmixr from both the R command line and a user-friendly browser-based Shiny dashboard application
- nlmixr requires access to compilers (e.g. using Rtools) and Python: both a full-package windows installer is available, and instructions on managing your own installation
- Documentation is available in the form of a bookdown (nlmixr.github.io) written and curated by Teun Post
- Runs on Linux, Windows, and OS X

\(^1\) https://github.com/nlmixrdevelopment/xpose.nlmixr
\(^2\) https://CRAN.R-project.org/package=xpose
\(^3\) https://github.com/RichardHooijmaijers/shinyMixR
The unified user interface

• Models are defined using a function containing an initialisation block (`ini`) and a model definition block (`model`)

```r
mod1 <- function() {
  ini({
    
  })
  model({
    
  })
}
```
The unified user interface

- The `ini` block defines the parameters
 - Thetas defined using assign operators (`<-` or `=`)
 - Residual error defined using assign operators (`<-` or `=`)
 - Etas defined using a model formula (`~`)
- Parameter names, starting values, labels (using `#`), bounds

```r
mod1 <- function() {
  ini(
    lCl <- 1.6  # log Cl (L/hr)
    lVc = log(90)  # log V (L)
    lKa <- 1  # log Ka (1/hr)
    prop.err <- c(0, 0.2, 1)
    eta.Ka ~ 0.1  # IIV Ka
    eta.Cl + eta.Vc ~ c(0.1,
                       0.005, 0.1)
  )
  model({
  })
}
```
The unified user interface

- **The model block defines**
 - the relationship between thetas and etas
 - the model structure using either ODEs or closed-form solutions
 - the residual error structure and where it is applied

```r
mod1 <- function(){
  ini({
  })
  model({
    Cl <- exp(lCl + eta.Cl)
    Vc <- exp(lVc + eta.Vc)
    KA <- exp(lKa + eta.Ka)
    kel <- Cl / Vc
    d/dt(depot) = -KA*depot
    d/dt(centr) = KA*depot-kel*centr
    cp = centr / Vc
    cp ~ prop(prop.err)
  })
}
```
Parameterisation and mu-referencing

- For SAEM, parameters must be defined using 'mu-referencing' and this implies estimating log-parameters with the IIV added on the log-scale
- For nlme, mu-referencing is not strictly required, but is shown to provide superior estimation results

```r
Data$logWT70 <- log(Data$WT/70)

mod1 <- function()
  ini{
    ## For SAEM parameters must be defined using 'mu-referencing'
    ## For nlme mu-referencing is not strictly required but is shown to provide
    ## superior estimation results
    lCl <- 1.6   # log Cl (L/hr)
    AllomCl <- 0.75 # log Cl (L/hr)
    ## .....
    eta.Cl ~ 0.1  # IIV Cl
    ## .....
  }

model{
  ## Parameters are defined in terms of the initial estimates
  Cl <- exp(lCl + eta.Cl)
  ## or for implementing covariate effects:
  Cl <- exp(lCl + eta.Cl + logWT70*AllomCl)
  ## Data transformations should be done outside the model definition
  ## .....
}
```
mod1 <- function(){
 ini({
 ## Initial conditions for population parameters (sometimes
 ## called theta parameters) are defined by either `<-` or `=`
 lCl <- 1.6 #log Cl (L/hr)
 ## Note that simple expressions that evaluate to a number are
 ## OK for defining initial conditions (like in R)
 lVc = log(90) #log V (L)
 ## Also a comment on a parameter is captured as a parameter label
 lKA <- 0.1 #log Ka (1/hr)
 ## Bounds may be specified by c(lower, est, upper), like NONMEM:
 ## Residuals errors are assumed to be population parameters
 prop.err <- c(0, 0.2, 1)
 add.err <- c(0, 0.01)
 ## Initial estimate for ka IIV variance
 eta.Cl ~ 0.1 # IIV Cl
 ## For correlated parameters, you specify the names of each
 ## correlated parameter separated by a addition operator `+`
 ## and the left handed side specifies the lower triangular
 ## matrix initial of the covariance matrix.
 eta.Vc + eta.KA ~ c(0.1,
 0.005, 0.1)
 ## Note that labels are not defined for correlated parameters.
 })
 model({
 ## Parameters are defined in terms of the initial estimates
 Cl <- exp(lCl + eta.Cl)
 Vc <- exp(lVc + eta.Vc)
 KA <- exp(lKA + eta.KA)
 ## Next, the differential equations are defined
 kel <- Cl / Vc;
 d/dt(depot) = -KA*depot;
 d/dt(centr) = KA*depot-kel*centr;
 ## And the concentration is then calculated
 cp = centr / Vc;
 ## Last, nlmixr is told that the plasma concentration follows
 ## a combined proportional/additive error
 cp ~ prop(prop.err)+add(add.err)
 })
}
And using a closed-form solution

```r
mod1 <- function(){
  ini({
    lCl <- 1.6       # log Cl (L/hr)
    lVc <- 4.5       # log V (L)
    lKA <- 0.1       # log Ka (1/hr)
    prop.err <- c(0, 0.2, 1)
    eta.Cl ~ 0.1     # IIV Cl
    eta.Vc + eta.KA ~ c(0.1, 0.005, 0.1)
  })
  model({
    Cl <- exp(lCl + eta.Cl)
    Vc <- exp(lVc + eta.Vc)
    KA <- exp(lKA + eta.KA)
    ## Instead of specifying the ODEs, you can use
    ## the linCmt() function to use closed-form solutions.
    ## This function determines the type of PK solved system
    ## to use by the parameters that are defined.
    ## In this case it knows that this is a one-compartment model
    ## with first-order absorption.
    linCmt() ~ prop(prop.err)
  })
}
```
The *nlmixr* dataset

- Datasets need to comply with RxODE requirements
- EVID is more complex
 - 101 for bolus dose in compartment 1, 10101 for infusion in compartment 1
- No MDV item so no on-the-fly removal of unwanted records
- Infusions need two records: one to start infusion and one to stop infusion (at time of infusion stop with a negative rate)
- No SS dosing so steady state needs to be coded using multiple preceding doses
- NONMEM datasets can be converted using a special function based on code by Yuan Xiong:

```r
dat <- nmDataConvert(dat);
```
Running nlmixr

- nlmixr is run using the following structure:
  ```r
  fit <- nlmixr(model.function, 
                 rxdode.dataset, 
                 est = "est", 
                 control = estControl(options))
  ```

- Currently nlme and SAEM are implemented

 - Example for nlme:
    ```r
    fit <- nlmixr(mod1, 
                   dat, 
                   est = "nlme", 
                   control = nlmeControl(pnlsTol = .05))
    ```

 - Example for SAEM:
    ```r
    fit <- nlmixr(mod1, 
                   dat, 
                   est = "saem", 
                   control = saemControl(
                       n.burn = 200, 
                       n.em = 300, 
                       print = 50
                   ))
    ```
The shinyMixR interface can manage your runs
The shinyMixR interface can be run from R...

```r
# Example of workflow directly within R
library(shinyMixR)

# Create new project
create_proj()

# Obtain project information
proj <- get_proj()

# Run nlmixr models (async in separate Rsession)
run_nmx("run1",proj)

# Use results created by the package
res <- readRDS("shinyMixR/run1.res.rds")
ggplot(res,aes(DV,PRED)) + geom_point(alpha=.6) + geom_abline(intercept=0,slope=1,colour="darkblue",linetype=2)

# Several other functions written for the interface are available for use in R environment
overview()  # Create data frame with overview of the models within the project
makeTree()  # Create interactive tree view of the models within project
```
...or by launching a browser session
Where models can be edited and run...
...and output like goodness of fit plots can be created using the new Xpose functionality, or using custom scripts...

\texttt{nlmixr} is fully integrated with the new version of Xpose
...and individual plots as well
Results can be exported to pdf or html
nlmixr performance

- 4 different dose levels (10, 30, 60 and 120 mg) of 30 subjects each as
 - single dose (over 72h)
 - multiple dose (4 daily doses)
 - single and multiple dose combined
 - and steady state dosing
- Range of test models:
 - 1- and 2-compartment disposition
 - with and without 1st order absorption
 - linear or Michaelis-Menten (MM) clearance
- A total of 42 test cases
 - all IIVs were set at 30%, residual error at 20%
 - overlapping PK parameters were the same for all models
- nlmixr estimation routines compared to NONMEM FOCE-I

nlmixr development team
Example full profiles (linear elimination)

Individual concentration profiles

- ID:1/Dose:60 mg
- ID:2/Dose:10 mg
- ID:3/Dose:10 mg
- ID:4/Dose:120 mg
- ID:5/Dose:60 mg
- ID:6/Dose:30 mg
- ID:7/Dose:120 mg
- ID:8/Dose:30 mg
- ID:9/Dose:120 mg
- ID:10/Dose:30 mg
Example full profiles (MM elimination)
Vc is available in all models:
Theta estimates using NONMEM FOCE-I and ODE implementation
Horizontal black line: value used for simulation
Red line: nlmixr/nlme estimates using ODEs
Non MM models also implemented using closed-form solutions:
Grey line: nlmixr/nlme estimates using closed-form solutions
SE of theta estimates for Vc are very comparable
Residual error is well-estimated
Horizontal black line: value used for simulation
Run times are perfectly acceptable, and often lower than NONMEM …but currently only single-threaded…
For V_c, Omega (IIV) estimates are also very comparable.

Horizontal black line: value used for simulation.
But if we examine V_p... the IIVs are often estimated close to zero.
...same with Ka...
...and Q
A large fraction of runs with IIV=0 for Ka for 500 sparse datasets: 91.1% for nlmixr/nlme vs. 2.2% for NONMEM FOCE-I
Disappointing results?

- Findings are in line with earlier experience with nlme
- Bob Bauer claims nlme is somewhere between ITS and FOCE (personal communication)

- However, nlme in nlmixr provides a gateway into nonlinear mixed effect modelling for statisticians...

- With the machinery in place, the groundwork is laid for other/better estimation routines, like SAEM or FOCE-I...

- SAEM currently also available in nlmixr: so how does SAEM perform?
Traceplot for parameters from one of the nlmixr/SAEM models

- eta.KA
- eta.KM
- eta.Vc
- eta.VM
- IKA
- IKM
- IVc
- IVM
- prop.err
Thetas for nlmixr/SAEM for Vc behave very nicely compared to NONMEM…
... and SEs for Vc seem to be even better estimated with nlmixr/SAEM than using NONMEM...
...and IIVs for nlmixr/SAEM for Vp show none of the close to zero behaviour observed with nlme
And no IIVs of zero with nlmixr/SAEM with sparse data
nlmixr/SAEM is slower than nlmixr/nlme but still workable
More good news?

- nlmixr also has an adaptive Gaussian quadrature algorithm (like NONMEM’s Laplace and higher) allowing fancy models
- nlmixr also has single subject dynamic models e.g. for complex system simulation and estimation (mcmc algorithm)
- Steps to implement ordered categorical models and count models in the SAEM algorithm
- Elementary implementation of VPC and bootstrap functionality
- Serious progress into multi-threaded simulation that will lead to multi-threaded estimation
- Implementation of FOCE-I under construction
What’s next?

- We need you!
- Field-testing: real-life examples
- Improving computational efficiency of estimation algorithms (e.g. within-problem parallelisation)
- Error-trapping
- New features implementation
- Etc, etc...

- This presentation will be made available on the bookdown site nlmixr.github.io