
Rik Schoemaker, PhD

The nlmixr development team:
Wenping Wang, Matt Fidler, Teun Post, Richard

Hooijmaijers, Mirjam Trame, Yuan Xiong,
Justin Wilkins and Rik Schoemaker

Simulation and parameter estimation

with RxODE and nlmixr

Course outline

• Introduction to RxODE

• Introduction to nlmixr

• Hands on with the warfarin PK models (part 1)

• Lunch

• Performance of nlmixr compared to NONMEM (FOCEI) and Monolix (SAEM)

• Advanced capabilities nlmixr

• Hands on with the warfarin PK and PKPD models (part 2)

nlmixr development team2

RxODE is pharmacometric simulation software as an open-source R

package

• Written by Wenping Wang and Matt Fidler, available on CRAN1 and GitHub2, and
described in a tutorial in CPT:PSP3 and with online documentation4

• Simulation of ODEs was already possible in R (using deSolve), but was slow and
virtually impossible to code with flexible dosing history

• RxODE has rapid execution due to compilation in C

• RxODE allows fully flexible dosing history

• Stable and mature software for Windows, OS X, Linux

• Requires external compilers (provided by Rtools on Windows)

[1] CRAN: https://cran.r-project.org/web/packages/RxODE

[2] GitHub: https://github.com/nlmixrdevelopment/RxODE

[3] Wang W et al. CPT:PSP (2016) 5, 3–10.

[4] RxODE packagedown: https://nlmixrdevelopment.github.io/RxODE

nlmixr development team3

https://cran.r-project.org/web/packages/RxODE
https://github.com/nlmixrdevelopment/RxODE
https://nlmixrdevelopment.github.io/RxODE

Basic example load the library and define the ODEs

nlmixr development team4

library(RxODE)

set up the system of differential equations (ODEs)
odeKA1 <- "
d/dt(depot) = -ka*depot; # This is compartment number 1 (depot)
d/dt(central) = ka*depot-(cl/v)*central; # This is compartment number 2 (central)
C1=central/v; # Calculates concentration from amount
"

Compile the model and set the parameter values

nlmixr development team5

library(RxODE)

set up the system of differential equations (ODEs)
odeKA1 <- "
d/dt(depot) = -ka*depot; # This is compartment number 1 (depot)
d/dt(central) = ka*depot-(cl/v)*central; # This is compartment number 2 (central)
C1=central/v; # Calculates concentration from amount
"

compile the model
modKA1 <- RxODE(model = odeKA1)

provide the parameter values to be simulated:
Params <-

c(ka = log(2)/0.5, # 1/h (absorption half-life of 30 minutes)
cl = 0.135, # L/h
v = 8) # L

Create an eventTable that defines the doses and the sampling times

nlmixr development team6

library(RxODE)
set up the system of differential equations (ODEs)
odeKA1 <- "
d/dt(depot) = -ka*depot; # This is compartment number 1 (depot)
d/dt(central) = ka*depot-(cl/v)*central; # This is compartment number 2 (central)
C1=central/v; # Calculates concentration from amount

"
compile the model
modKA1 <- RxODE(model = odeKA1)
provide the parameter values to be simulated:
Params <-

c(ka = log(2)/0.5, # 1/h (absorption half-life of 30 minutes)
cl = 0.135, # L/h
v = 8) # L

create an empty event table that stores both dosing and sampling information :
ev <- eventTable()

add a dose to the event table:
ev$add.dosing(dose = 500) #mg

add time points to the event table where concentrations will be simulated
these actions are cumulative
ev$add.sampling(seq(0, 120, 0.1))

Run the model and plot the results

nlmixr development team7

library(RxODE)
set up the system of differential equations (ODEs)
odeKA1 <- "
d/dt(depot) = -ka*depot; # This is compartment number 1 (depot)
d/dt(central) = ka*depot-(cl/v)*central; # This is compartment number 2 (central)
C1=central/v; # Calculates concentration from amount

"
compile the model
modKA1 <- RxODE(model = odeKA1)
provide the parameter values to be simulated:
Params <-

c(ka = log(2)/0.5, # 1/h (absorption half-life of 30 minutes)
cl = 0.135, # L/h
v = 8) # L

create an empty event table that stores both dosing and sampling information :
ev <- eventTable()
add a dose to the event table:
ev$add.dosing(dose = 500) #mg
add time points to the event table where concentrations will be simulated
these actions are cumulative
ev$add.sampling(seq(0, 120, 0.1))

Then solve the system
The output from rxSolve is a solved RxODE object,
By making it a data.frame only the simulated values are retained:
Res <- data.frame(rxSolve(modKA1, Params, ev))

Single bolus dose in the first (depot) compartment

nlmixr development team8

Adding extra doses (expand the existing eventTable):

three additional infusions in the central compartment

nlmixr development team9

Extend the eventTable by adding three infusions to the central compartment
Remember: updates to the eventTable are cumulative

ev$add.dosing(
dose = 250, #mg
nbr.doses = 3, #add three doses
dosing.to = 2, #add them to the second ODE in the model (=central)
dosing.interval = 12, #h; set the doses 12 hours apart
rate = 125, #mg/h; infuse at a rate of 125 mg/h, resulting in 2-hour infusions
start.time = 36 #h; have the three doses start at 36h

)

Res <- data.frame(rxSolve(modKA1, Params, ev))

Multiple dose in different compartments

Only the first dose goes into the depot (first) compartment

nlmixr development team10

Add a transit compartment…

nlmixr development team11

odeKA1trans <- "
d/dt(depot) = -ka*depot;
d/dt(central) = ktr*trans-(cl/v)*central; # update to central: input from trans
d/dt(trans) = ka*depot-ktr*trans; # transit compartment between depot and central
C1=central/v;

"

compile the model
modKA1trans <- RxODE(model = odeKA1trans)

provide the extra ktr parameter:
Params2 <- c(

ka = log(2)/0.5, # 1/h (absorption half-life of 30 minutes)
cl = 0.135, # L/h
v = 8, # L
ktr = log(2)/5) # 1/h (transit half-life of 5 hours)

the eventTable does not have to change
Res <- data.frame(rxSolve(modKA1trans, Params2, ev))

if the trans compartment had been put as second compartment above,
the eventTable would need an update to infuse in compartment 3 instead

...adding a transit compartment between depot and central

nlmixr development team12

Or with five transit compartments and only bolus doses in the depot…

nlmixr development team13

odeKA5trans <- "
d/dt(depot) = -ktr*depot;
d/dt(central) = ktr*trans5-(cl/v)*central; # update to central: input from trans5
d/dt(trans1) = ktr*depot-ktr*trans1; # use same constant for every compartment
d/dt(trans2) = ktr*trans1-ktr*trans2;
d/dt(trans3) = ktr*trans2-ktr*trans3;
d/dt(trans4) = ktr*trans3-ktr*trans4;
d/dt(trans5) = ktr*trans4-ktr*trans5;
C1=central/v;

"

ev3 <- eventTable()
ev3$add.dosing(dose = 500) # mg; 1st bolus
ev3$add.dosing(

dose = 250, # mg
nbr.doses = 3, # 3 additional doses (bolusses because rate is absent so rate=0)
dosing.interval = 12, # h; at 12 hour intervals
dosing.to = 1, # dosed into depot (compartment 1)
start.time = 36 # h; starting at 36 hours

)
ev3$add.sampling(seq(0, 120, 0.1))

Params3 <-
c(ktr = log(2)/1, # use same constant for every compartment
cl = 0.135,
v = 8)

modKA5trans <- RxODE(model = odeKA5trans)

Res <- data.frame(rxSolve(modKA5trans, Params3, ev3))

...adding 5 transit compartments between depot and central

and giving 4 bolus doses in the 1st (depot) compartment

nlmixr development team14

Hands-on session I: RxODE simulations

• Make sure you can either access the Otago server at
https://student.desktop.otago.ac.nz/vpn/index.html or run your own nlmixr
installation

• Examine the code in PAWS_1.R to run pre-programmed simulations and try out your
own variations

nlmixr development team15

https://student.desktop.otago.ac.nz/vpn/index.html

You need to simulate before you can estimate

• With simulation covered, you can start to think about estimation

• Combine the simulation core with estimation routines and you get:

nlmixr!

nlmixr development team16

nlmixr is an open-source R package

• Written by Wenping Wang and Matt Fidler, and available on CRAN1 and GitHub2:

• builds on RxODE

• combined with nlme, SAEM, and FOCEI estimation routines, provides an R package for
parameter estimation in nonlinear mixed effect models

• under very active development!

• nlmixr is completely free and open, and does not depend on any other commercial
tool such as NONMEM or Monolix

• nlmixr provides an efficient and versatile way to specify pharmacometric models
(both closed-form and ODEs) and dosing scenarios, with rapid execution due to
compilation in C

[1] https://cran.r-project.org/web/packages/nlmixr
[2] https://github.com/nlmixrdevelopment/nlmixr

nlmixr development team17

https://cran.r-project.org/web/packages/nlmixr
https://github.com/nlmixrdevelopment/nlmixr

nlmixr is an open-source R package

• Models are defined using a unified user interface (UUI): common input and output
structure for the various estimation algorithms

• xpose.nlmixr1 written by Justin Wilkins provides linkage to the new Xpose package2, written
by Ben Guiastrennec, feeding the uniform output into a highly flexible diagnostics package

• The shinyMixR3 project management tool written by Richard Hooijmaijers and Teun Post
provides an interface to nlmixr from both the R command line and a user-friendly browser-
based Shiny dashboard application

• nlmixr requires access to compilers (e.g. using Rtools) and Python: both a full-package
windows installer is available4, and instructions on managing your own installation5

• Documentation is available in the form of a bookdown (nlmixr.github.io) written and
curated by Teun Post

• Runs on Linux, Windows, and OS X

[1] https://github.com/nlmixrdevelopment/xpose.nlmixr
[2] https://CRAN.R-project.org/package=xpose
[3] https://github.com/RichardHooijmaijers/shinyMixR
[4] https://github.com/nlmixrdevelopment/nlmixr/releases/

[5] https://nlmixrdevelopment.github.io/nlmixr

nlmixr development team18

https://nlmixrdevelopment.github.io/nlmixr_bookdown/index.html
https://github.com/nlmixrdevelopment/xpose.nlmixr
https://cran.r-project.org/package=xpose
https://github.com/RichardHooijmaijers/shinyMixR
https://github.com/nlmixrdevelopment/nlmixr/releases/
https://nlmixrdevelopment.github.io/nlmixr

Defining nlmixr models

19

• Models are defined using a function containing an initialisation block (ini) and a
model definition block (model)

nlmixr development team

One.comp.KA.solved <- function() {
ini({
Where initial conditions/variables are specified

})
model({
Where the model is specified

})
}

Defining nlmixr models

20

• The ini block defines the parameters

• Thetas and residual error defined using assign operators (<- or =)

• Etas defined using a model formula (~)

• Parameter names, starting values, labels (using #), bounds for some estimation
routines (like FOCEI)

nlmixr development team

One.comp.KA.solved <- function() {
ini({
Where initial conditions/variables are specified
lka <- log(1.15) #log ka (1/h)
lcl <- log(0.135) #log Cl (L/h)
lv <- log(8) #log V (L)
prop.err <- 0.15 #proportional error (SD/mean)
add.err <- 0.6 #additive error (mg/L)
eta.ka ~ 0.5 #IIV ka
eta.cl ~ 0.1 #IIV cl
eta.v ~ 0.1 #IIV v

})
model({

})
}

Defining nlmixr models

21

• The model block defines

• the relationship between thetas and etas

• the model structure using either closed-form solutions or ODEs

• the residual error structure, and where it is applied

nlmixr development team

One.comp.KA.solved <- function() {
ini({

})
model({
Where the model is specified
cl <- exp(lcl + eta.cl)
v <- exp(lv + eta.v)
ka <- exp(lka + eta.ka)
solved system example
where residual error is assumed to follow proportional and additive error
linCmt() ~ prop(prop.err) + add(add.err)

})
}

Running nlmixr models: the full model

22 nlmixr development team

One.comp.KA.solved <- function() {
ini({
Where initial conditions/variables are specified
lka <- log(1.15) #log ka (1/h)
lcl <- log(0.135) #log Cl (L/h)
lv <- log(8) #log V (L)
prop.err <- 0.15 #proportional error (SD/mean)
add.err <- 0.6 #additive error (mg/L)
eta.ka ~ 0.5 #IIV ka
eta.cl ~ 0.1 #IIV cl
eta.v ~ 0.1 #IIV v

})
model({
Where the model is specified
cl <- exp(lcl + eta.cl)
v <- exp(lv + eta.v)
ka <- exp(lka + eta.ka)
solved system example
where residual error is assumed to follow proportional and additive error
linCmt() ~ prop(prop.err) + add(add.err)

})
}

Running nlmixr models: check the model code

23 nlmixr development team

Check the model and some of the assumptions made by nlmixr
note assumption that AMT goes into CMT=1 is not shown
nlmixr(One.comp.KA.solved)

Running nlmixr models with the nlmixr command

24 nlmixr development team

estimate parameters using nlmixr:
fitOne.comp.KA.solved_S <-

nlmixr(
One.comp.KA.solved, #the model definition
PKdata, #the data set
est = "saem", #the estimation algorithm (SAEM)

#the SAEM minimisation options:
saemControl(nBurn = 200, #200 SAEM burn-in iterations (the default)

nEm = 300, #300 EM iterations (the default)
print = 50), #only print every 50th estimation step

tableControl(cwres = TRUE) #calculates NONMEM-style conditional weighted residuals for diagnostics
)

results are stored in the nlmixr object and can be viewed:
fitOne.comp.KA.solved_S

nlmixr output for SAEM

nlmixr development team25

The labels in the ini block end up in the output, and the log-transformed

parameters are returned with a back-transformation and 95%CIs

nlmixr development team26

Running nlmixr models: save the object, and examine parameter trace

plots when using SAEM to check convergence

27 nlmixr development team

results are stored in the nlmixr object and can be viewed:
fitOne.comp.KA.solved_S

and saved for future use or reference:
save(fitOne.comp.KA.solved_S, file = "fitOne.comp.KA.solved_S.Rdata")

and for SAEM, convergence can be checked using a parameter trace plot:
traceplot(fitOne.comp.KA.solved_S)

Traceplot for SAEM parameter estimates using traceplot command

nlmixr development team28

nlmixr is linked to Ben Guiastrennec's xpose* package that uses ggplot2

*https://uupharmacometrics.github.io/xpose/

nlmixr development team29

the nlmixr object can be transformed into an xpose object to allow diagnostics with the new xpose package
the link between nlmixr and xpose is provided by the xpose.nlmixr package
only xpose_data_nlmixr is from xpose.nlmixr
all further commands (see cheatsheet) are from the xpose package

xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)

this can also be used to generate trace plots (parameters vs iterations:)
prm_vs_iteration(xpdb.1s)
to remove the path to the script from the plot use:
prm_vs_iteration(xpdb.1s,caption=NULL)

https://uupharmacometrics.github.io/xpose/

Traceplot for SAEM parameter estimates using xpose

nlmixr development team30

DV vs conditional population predictions (CPRED) using xpose

nlmixr development team31

xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)
dv vs pred plot:
dv_vs_pred(xpdb.1s,

caption = NULL)

DV vs PRED using xpose

nlmixr development team32

by default model typical predictions (PRED) are assigned to CPRED (conditional population predictions):
list_vars(xpdb.1s)

if you want this to be PRED instead, these can be updated, either using 'standard' syntax:
xpdb.1s<-set_var_types(xpdb.1s,pred = 'PRED')
or using magrittr piping type code:
xpdb.1s<-xpdb.1s %>% set_var_types(pred = 'PRED')

DV vs PRED using xpose

nlmixr development team33

xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)
plot PRED instead of CPRED:
xpdb.1s<-xpdb.1s %>% set_var_types(pred = 'PRED')
dv vs pred plot:
dv_vs_pred(xpdb.1s,

caption = NULL)

DV vs IPRED using xpose

nlmixr development team34

xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)
dv vs ipred plot:
dv_vs_ipred(xpdb.1s,

caption = NULL)

Conditional weighted residuals vs. time using xpose

nlmixr development team35

xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)
CWRES vs time:
res_vs_idv(xpdb.1s, #the xpose object

res = "CWRES", #examine CWRES
idv = "TIME", #as a function of time
caption = NULL)

Absolute values of individual weighted residuals vs. time

nlmixr development team36

xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)
|IWRES| vs time:
absval_es_vs_idv(xpdb.1s, #the xpose object

res = "IWRES", #examine |IWRES|
idv = "TIME", #as a function of time
caption = NULL)

Issue with absorption?

nlmixr is linked to Ron Keizer's vpc* package

*http://vpc.ronkeizer.com/

nlmixr development team37

nlmixr comes with its own built-in vpc functionality that uses Ron Keizer's vpc package
see the cheatsheet for further options
vpc_ui(
fitOne.comp.KA.solved_S, #the nlmixr object
n = 500, #number of trials simulated using estimated

parameters and study sampling structure
show = list(obs_dv = TRUE), #additional items to show, like the observations
xlab = "Time (h)", #x-axis label
ylab = "Concentration (mg/L)", #y-axis label
title = "VPC for first order absorption PopPK model"

)

https://uupharmacometrics.github.io/xpose/

VPC for the base model on linear scale...

nlmixr development team38

...and on log scale. It's super fast ☺

nlmixr development team39

or with a log y-axis starting at 0.5
vpc_ui(

fitOne.comp.KA.solved_S,
n = 500,
show = list(obs_dv = TRUE),
xlab = "Time (h)",
ylab = "Concentration (mg/L)",
title = "VPC for first order absorption PopPK model with log

y-axis",
log_y = TRUE, #to request a log y-axis
log_y_min = 0.5 #starting at 0.5

)

nlmixr can generate individual graphs using xpose or augPred

nlmixr development team40

Individual fits can be generated using using xpose:
ind_plots(xpdb.1s,caption = NULL,ncol = 4,nrow = 4)
...use the arrows in the plot window to examine the earlier curves

Individual fits can also be generated using augPred (augmented predictions)
that provides smooth profiles by interpolating the predictions between observations:
plot(augPred(fitOne.comp.KA.solved_S))
...use the arrows in the plot window to examine the earlier curves

Individual fits can be generated using xpose

nlmixr development team41

Individual fits can also be generated using augPred (augmented predictions) that

provides smooth profiles by interpolating the predictions between observations

nlmixr development team42

use augPred output to plot using your favourite package…

nlmixr development team43

#or the augPred output can be plotted to your liking, for instance using ggplot2 or the lattice function xyplot:
indivpk<-augPred(fitOne.comp.KA.solved_S)
nlmixCOLS <- c("#28466A","#8DB6CD","#B40000) ## specify array of colours for curves

xyplot(
values~time|id, ## plot the variable values by time and make a separate panel for each id
data=indivpk, ## data source with smooth interpolated predictions and observations
groups=ind, ## make separate curves by ind that separates Observed data,

Individual predictions and Population predictions
layout=c(8,4), ## arrange as 8 columns and 4 rows
type=c("l","l","p"), ## represent these three by a line, a line and only markers (l=line, p=points)
col=nlmixCOLS[c(2,1,3)], ## colours for each curve
cex=c(0.1,0.1,1), ## character size for the markers
lwd=c(2,2,0.1), ## line width of the lines
pch=19, ## use closed circles as marker
xlab="Time (hr)\n", ## x-axis label
ylab="Warfarin (mg/L)", ## y-axis label
as.table=TRUE, ## have the first plot at the top left (otherwise plot 1 starts at the lower left corner)
scales=list(alternating=1), ## have axis labels at left and bottom (and not alternating)
main="First order-absorption linear elimination", ## title for plot
auto.key=list(adj=1,col=nlmixCOLS[c(2,1,3)],columns=3,space="bottom",rectangles=FALSE,points=FALSE) ## key for curves

)

..like lattice

nlmixr development team44

Hands-on session II: running nlmixr and diagnostics

• Examine the code in PAWS_2.R to run a pre-programmed SAEM analysis with a
solved system and its diagnostics

• Stop at nlmixr analysis Part 2

nlmixr development team45

Solved systems and ODEs…

46

• Using solved-system code:

• For a solved system, model structure is automatically derived (!) from the parameter
names in the ini block

• Using ODEs:

• ODEs are much more flexible but also more time-consuming

• Solved systems are currently only available for SAEM and nlme, but FOCEI will follow
soon; ODEs are available for all estimation routines

nlmixr development team

linCmt() ~ prop(prop.err) + add(add.err)

RxODE-style differential equation definition
d/dt(gut) = -ka * gut
d/dt(central) = ka * gut - (cl / v) * central
Concentration is calculated
cp = central / v
And is assumed to follow proportional and additive error
cp ~ prop(prop.err) + add(add.err)

Running nlmixr for a system of ODEs using FOCEI

47 nlmixr development team

PK001 <- function() {
ini({
Where initial conditions/variables are specified
lka <- log(1.15) #log ka (/h)
lcl <- log(0.135) #log Cl (L/hr)
lv <- log(8) #log V (L)
prop.err <- 0.15 #proportional error (SD/mean)
add.err <- 0.6 #additive error (mg/L)
eta.ka ~ 0.5 #IIV ka
eta.cl ~ 0.1 #IIV cl
eta.v ~ 0.1 #IIV v

})
model({
Where the model is specified
cl <- exp(lcl + eta.cl)
v <- exp(lv + eta.v)
ka <- exp(lka + eta.ka)
RxODE-style differential equation definition
d/dt(gut) = -ka * gut
d/dt(center) = ka * gut - (cl / v) * center
Concentration is calculated
cp = center / v
And is assumed to follow proportional and additive error
cp ~ prop(prop.err) + add(add.err)

})
}

fitPK001_F <- nlmixr(PK001, NMdata, est = "focei")

nlmixr output for FOCEI with ODEs

nlmixr development team48

Hands-on session III: running nlmixr with ODEs and perform model

development

• Start at nlmixr analysis Part 2

• Examine the code in PAWS_2.R to run a pre-programmed FOCEI analysis with ODEs

• Examine the goodness of fit plots and implement alternative models for absorption
(like one or more transit compartments, lag-time…)

nlmixr development team49

Running nlmixr: 1 transit compartment

50 nlmixr development team

5 transit compartments
One.comp.transit <- function() {

ini({
Where initial conditions/variables are specified
lktr <- log(1.15) #log transit rate constant (/h)
lcl <- log(0.135) #log Cl (L/h)
lv <- log(8) #log V (L)
prop.err <- 0.15 #proportional error (SD/mean)
add.err <- 0.6 #additive error (mg/L)
eta.ktr ~ 0.5 #IIV ktr
eta.cl ~ 0.1 #IIV cl
eta.v ~ 0.1 #IIV v

})
model({
Where the model is specified
ktr <- exp(lktr + eta.ktr)
cl <- exp(lcl + eta.cl)
v <- exp(lv + eta.v)
ODE example
d/dt(depot) =-ktr*depot
d/dt(central) = ktr*trans – (cl/v)*central
d/dt(trans) = ktr*(depot - trans)
where residual error is assumed to follow proportional and additive error
central ~ prop(prop.err) + add(add.err)

})}

nlmixr output: 1 transit compartment with ODEs using FOCEI

nlmixr development team51

VPC for one compartment model with a transit compartment using FOCEI

nlmixr development team52

|IWRES| by time for first order absorption model with 1 transit

compartment using FOCEI

nlmixr development team53

Running nlmixr: 5 transit compartments

54 nlmixr development team

5 transit compartments
KA1tr5ode <- function() {

ini({
Where initial conditions/variables are specified
lktr <- log(1.15) #log transit rate constant (/h)
lcl <- log(0.135) #log Cl (L/h)
lv <- log(8) #log V (L)
prop.err <- 0.15 #proportional error (SD/mean)
add.err <- 0.6 #additive error (mg/L)
eta.ktr ~ 0.5 #IIV ktr
eta.cl ~ 0.1 #IIV cl
eta.v ~ 0.1 #IIV v

})
model({
Where the model is specified
ktr <- exp(lktr + eta.ktr)
cl <- exp(lcl + eta.cl)
v <- exp(lv + eta.v)
ODE example
d/dt(depot) =-ktr*depot
d/dt(central) = ktr*transit5 - cl* central/v
d/dt(transit1)= ktr*(depot - transit1)
d/dt(transit2)= ktr*(transit1 - transit2)
d/dt(transit3)= ktr*(transit2 - transit3)
d/dt(transit4)= ktr*(transit3 - transit4)
d/dt(transit5)= ktr*(transit4 - transit5)
where residual error is assumed to follow proportional and additive error
central ~ prop(prop.err) + add(add.err)

})}

nlmixr output: 5 transit compartments with ODEs using SAEM

nlmixr development team55

VPC for first order absorption with 5 transit compartments using SAEM

nlmixr development team56

nlmixr output: 5 transit compartments with ODEs using FOCEI

Change in OFV compared to model with 1 transit compartment: -90.82

nlmixr development team57

VPC for first order absorption with 5 transit compartments using FOCEI

nlmixr development team58

|IWRES| by time for first order absorption model with 5 transit

compartments using FOCEI

nlmixr development team59

Comparison of GOF plots for different absorption models
No transit compartment (left), one transit compartment (middle), 5 transit compartments (right)

nlmixr development team60

Objective function values and estimation algorithms

• When you request cwres=TRUE for an SAEM analysis, nlmixr calculates an FOCEI-
type objective function value, and FOCEI-type conditional weighted residuals

• However, this does not mean that they can be formally (or even informally)
compared: as with NONMEM, comparisons should only ever be performed with
nested models using the same estimation algorithm

• Differences in OFV are not an indication of superiority of estimates obtained from
one algorithm over another

nlmixr development team61

nlmixr can generate empirical Bayes estimates for Bayesian feedback:

individual EBEs for a new data set using existing population parameters

62

• Useful in a therapeutic drug monitoring
setting

• Or for generating exposure estimates
with a particularly nasty model that you
do not want to refit on new data ☺

nlmixr development team

KA1tr5posthoc <- function() {
ini({
Specify previously obtained population estimates (e.g. from NONMEM or nlmixr)
lktr <- 1.18994619 #log ktr (/h)
lcl <- -2.01737477 #log Cl (L/h)
lv <- 2.06631620 #log V (L)
prop.err <- 0.07883633 #proportional error (SD/mean)
add.err <- 0.37249666 #additive error (mg/L)
eta.ktr ~ 0.2532964 #IIV ktr
eta.cl ~ 0.08073339 #IIV Cl
eta.v ~ 0.04490733 #IIV V

})
model({
cl <- exp(lcl + eta.cl)
v <- exp(lv + eta.v)
ktr <- exp(lktr + eta.ktr)

d/dt(trns1) = -ktr * trns1
d/dt(trns2) = ktr * trns1 - ktr * trns2
d/dt(trns3) = ktr * trns2 - ktr * trns3
d/dt(trns4) = ktr * trns3 - ktr * trns4
d/dt(trns5) = ktr * trns4 - ktr * trns5
d/dt(central) = ktr * trns5 - (cl/v) * central
cp = central/v
cp ~ prop(prop.err) + add(add.err)

})
}

fitKA1tr5_Fph <- nlmixr(KA1tr5posthoc, PKdata,
est = "posthoc") # Specify posthoc as estimation method

Individual graphs for the five transit compartment model estimated using Bayesian

feedback; perfect fit even though there was no actual parameter estimation

nlmixr development team63

Parameterisation and mu-referencing

64

• For SAEM, parameters must be defined using 'mu-referencing’

• This means that inter-individual variability parameters must be added onto
population parameters

• This implies estimating log-parameters with the IIV added on the log-scale

• For FOCEI, mu-referencing is not strictly required, but is shown to provide superior
estimation results

• For a binary covariate (e.g. sex 0/1), the back-transformed estimate is a fold-change
that can be re-written as a percentage change

nlmixr development team

Corresponding nlmixr code

65 nlmixr development team

One compartment transit model with Sex on V
KAtr1_sexV <- function() {

ini({
lktr <- log(1.15) #log k transit (/h)
lcl <- log(0.135) #log CL (L/h)
lv <- log(8) #log V (L)
Sex_V <- 0.1 #log Sex on v
prop.err <- 0.15 #proportional error (SD/mean)
add.err <- 0.6 #additive error (mg/L)
eta.ktr ~ 0.5 #IIV ktr
eta.cl ~ 0.1 #IIV Cl
eta.v ~ 0.1 #IIV V

})
model({

#Sex on volume
cl <- exp(lcl + eta.cl)
v <- exp(lv + eta.v + Sex_V * SEX) #the SEX covariate is 0 or 1 in the data set
ktr <- exp(lktr + eta.ktr)
d/dt(depot) = -ktr * depot
d/dt(central) = ktr * trans - (cl/v) * central
d/dt(trans) = ktr * depot - ktr * trans
cp = central/v
cp ~ prop(prop.err) + add(add.err)

})

nlmixr output: mu-referenced sex on V (log-scale)

nlmixr development team66

Parameterisation and mu-referencing

67

• For a binary covariate (e.g. sex 0/1; female/males), the back-transformed estimate is
a fold-change that can be re-written as a percentage change

• The estimated 0.394 (95%CI: -0.0847 / 0.872) translates to a fold-change estimate of
1.482 (95%CI: 0.919/ 2.392) which corresponds to a change of
48.2% (95%CI: -8.1% / 139.2%) for males

nlmixr development team

mu-referencing and allometric scaling

68

• For a standard allometric equation we would use:

• 𝐶𝐿𝑖 = 𝐶𝐿𝑃𝑜𝑝 ∙ ൗ𝑊𝑇𝑖
70

Τ3 4
∙ 𝑒𝜂

• Take the log on both sides

• 𝑙𝑜𝑔 𝐶𝐿𝑖 = 𝑙𝑜𝑔 𝐶𝐿𝑃𝑜𝑝 + 𝑙𝑜𝑔 ൗ𝑊𝑇𝑖
70

Τ3 4
+ 𝑙𝑜𝑔 𝑒𝜂

• 𝑙𝑜𝑔 𝐶𝐿𝑖 = 𝑙𝑜𝑔 𝐶𝐿𝑃𝑜𝑝 + Τ3 4 ∙ 𝑙𝑜𝑔 ൗ𝑊𝑇𝑖
70 + 𝜂

• And back-transforming:

• 𝐶𝐿𝑖 = 𝑒
𝑙𝑜𝑔 𝐶𝐿𝑃𝑜𝑝 + Τ3 4∙𝑙𝑜𝑔 ൗ𝑊𝑇𝑖

70 +𝜂

nlmixr development team

Corresponding nlmixr code

69

• Code is most stable if transformations are carried out in the data file instead of in the
model code, especially for SAEM:

nlmixr development team

Using standard R syntax:
PKdata$logWT70 <- log(PKdata$WT/70)

Or using data.table syntax
PKdata[,logWT70:=log(WT/70)]

Corresponding nlmixr code: allometric scaling

70 nlmixr development team

One.comp.transit.allo <- function() {
ini({
lktr <- log(1.15) #log k transit (/h)
lcl <- log(0.135) #log Cl (L/hr)
lv <- log(8) #log V (L)
ALLC <- fix(0.75) #allometric exponent cl
ALLV <- fix(1.00) #allometric exponent v
prop.err <- 0.15 #proportional error (SD/mean)
add.err <- 0.6 #additive error (mg/L)
eta.ktr ~ 0.5 #IIV ktr
eta.cl ~ 0.1 #IIV Cl
eta.v ~ 0.1 #IIV V

})
model({

#Allometric scaling on weight
cl <- exp(lcl + eta.cl + ALLC * logWT70)
v <- exp(lv + eta.v + ALLV * logWT70)
ktr <- exp(lktr + eta.ktr)
d/dt(depot) = -ktr * depot
d/dt(central) = ktr * trans - (cl/v) * central
d/dt(trans) = ktr * depot - ktr * trans
cp = central/v
cp ~ prop(prop.err) + add(add.err)

})
}

nlmixr output: allometric scaling ODEs using FOCEI

Change in OFV compared to model without allometric scaling: -29.49

nlmixr development team71

VPC for one compartment model with a transit compartment and allometric scaling

using FOCEI

nlmixr development team72

nlmixr output: allometric scaling ODEs using FOCEI

Freely estimated exponents: drop of only 2.11 points

nlmixr development team73

Hands-on session IV: running an nlmixr posthoc analysis and

implementing covariates using mu-referencing

• Examine the code in PAWS_4.R to run a posthoc analysis

• Examine the code in PAWS_4.R to run a covariate analysis with additive on log-scale
covariate implementation

• Binary covariate (sex)

• Continuous covariate (weight)

• Modify the allometrically scaled model with fixed exponents to examine what
happens when you set them free

nlmixr development team74

PKPD analysis with nlmixr: sequential estimation

75

• First approach: use EBEs from a previous PK model to define PK profiles and estimate
PKPD relationship

• Extract EBEs from nlmixr object and merge to PKPD data file

nlmixr development team

load(file = "fitOne.comp.transit.allo_F.Rdata")
#Use the one compartment transit model to start the PD analysis
EBEs <- as.data.table(fitOne.comp.transit.allo_F)
EBEs <- EBEs[!duplicated(ID), .(ID = as.numeric(as.character(ID)),

IKTR = ktr, ICL = cl, IV = v)]
PKPDdata <- fread("warfarin_dat.csv")

#Change variable names to upper case (not strictly necessary)
setnames(PKPDdata, names(dataF), toupper(names(dataF)))

#Generate MDV data items
PKPDdata[, MDV := ifelse(is.na(DV), 1, 0)]
PKPDdata[, MDV := ifelse(AMT > 0, 1, MDV)]

#Merge data with PK EBEs
PDdata <- merge(PKPDdata, EBEs, by = "ID", all.x = TRUE)

#Mark the PK measurements from the file to not be analysed
PDdata[, MDV := ifelse(DVID == 1 & AMT == 0, 1, MDV)]

PKPD analysis with nlmixr: define turnover model using PK EBEs

76 nlmixr development team

KA1tr1IPP_PDtoemax1 <- function() {
ini({
tc50 <- log(1) #log ec50 (mg/L)
tkout <- log(0.05) #log tkout (/h)
te0 <- log(100) #log e0
eta.c50 ~ .5
eta.kout ~ .1
eta.e0 ~ .1
eps.pdadd <- 100

})
model({
c50 = exp(tc50 + eta.c50)
kout = exp(tkout + eta.kout)
e0 = exp(te0 + eta.e0)
PK parameters from input data set
ktr = IKTR
cl = ICL
v = IV
cp = central/v
PD = 1 - cp/(c50 + cp)
effect(0) = e0
kin = e0 * kout
d/dt(depot) = -ktr * depot
d/dt(central) = ktr * trans - cl/v * central
d/dt(trans) = ktr * depot - ktr * trans
d/dt(effect) = kin * PD - kout * effect
effect ~ add(eps.pdadd)

})
}

VPC turnover Emax PD model with PK using EBEs

nlmixr development team77

Individual graphs for turnover Emax PD model with PK using EBEs

nlmixr development team78

Hands-on session V: running a sequential nlmixr PKPD analysis

• Examine the code in PAWS_5.R to generate a data file with EBEs to describe the PK-
part of the PKPD model

• Run the sequential PKPD analysis

nlmixr development team79

PKPD analysis with nlmixr: simultaneous estimation

80

• Second approach: estimate PK and PD simultaneously

• The source of observations is identified using either a CMT data item or a DVID data
item

• CMT defines the compartment where data are observed

• DVID is coded as 1, 2 to identify the first and second type of observation as presented in
the model code

nlmixr development team

Immediate effect simultaneous PKPD analysis with nlmixr: ini block

81 nlmixr development team

#Immediate effect
KA1tr1_PDimmemax1 <- function() {

ini({
PK
tktr <- log(1) # log ktr (/h)
tcl <- log(0.1) # log CL (L/h)
tv <- log(8) # log Vc (L)
eta.ktr ~ 1
eta.cl ~ 0.1
eta.v ~ 0.1
eps.pkprop <- 0.1 #proportional error (SD/mean)
eps.pkadd <- 0.4 #additive error (mg/L)

PD
tc50 <- log(1) #log ec50 (mg/L)
te0 <- log(100) #log e0
eta.c50 ~ .5
eta.e0 ~ .1
eps.pdadd <- 100

})
model({

})
}

Immediate effect simultaneous PKPD analysis with nlmixr: model block

82 nlmixr development team

#Immediate effect
model({
ktr <- exp(tktr + eta.ktr)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)

c50 = exp(tc50 + eta.c50)
e0 = exp(te0 + eta.e0)

cp = central/v
d/dt(depot) = -ktr * depot
d/dt(central)= ktr * trans - cl * cp
d/dt(trans) = ktr * depot - ktr * trans
effect = e0 * (1 - cp/(c50 + cp))

cp ~ prop(eps.pkprop) + add(eps.pkadd) | central
effect ~ add(eps.pdadd) | effect

})
}

Simultaneous PKPD analysis with nlmixr: examine defined model

83 nlmixr development team

nlmixr(KA1tr1_PDimmemax1) # Show initial estimates and model:

nlmixr output: immediate effect simultaneous PKPD model

nlmixr development team84

VPC for immediate effect simultaneous PKPD model

nlmixr development team85

Effect compartment simultaneous PKPD analysis with nlmixr: ini block

86 nlmixr development team

#Effect compartment model
KA1tr1_PDceemax <- function() {

ini({
PK
tktr <- log(1) # log ktr (/h)
tcl <- log(0.1) # log CL (L/h)
tv <- log(8) # log Vc (L)
eta.ktr ~ 1
eta.cl ~ 0.1
eta.v ~ 0.1
eps.pkprop <- 0.1 #proportional error (SD/mean)
eps.pkadd <- 0.4 #additive error (mg/L)

PD
tc50 <- log(1) #log ec50 (mg/L)
tkout <- log(0.05) #log tkout (/h)
te0 <- log(100) #log e0
eta.c50 ~ .5
eta.kout ~ .1
eta.e0 ~ .1
eps.pdadd <- 100

})
model({

})
}

Effect compartment simultaneous PKPD analysis with nlmixr: model block

87 nlmixr development team

#Effect compartment model
model({

ktr <- exp(tktr + eta.ktr)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)

c50 = exp(tc50 + eta.c50)
kout = exp(tkout + eta.kout)
e0 = exp(te0 + eta.e0)
emax = 1

cp = central/v
d/dt(depot) = -ktr * depot
d/dt(central) = ktr * trans - cl * cp
d/dt(trans) = ktr * depot - ktr * trans
d/dt(ce) = kout * (cp - ce)

effect = e0 * (1 - emax * ce/(c50 + ce))

cp ~ prop(eps.pkprop) + add(eps.pkadd) | central
effect ~ add(eps.pdadd) | effect

})
}

nlmixr output: effect compartment simultaneous PKPD model

nlmixr development team88

VPC for effect compartment simultaneous PKPD model

nlmixr development team89

Turnover model simultaneous PKPD analysis with nlmixr: ini block

90 nlmixr development team

#Turnover simultaneous PKPD model
KA1tr1IPP_PDtoemax <- function() {

ini({
PK
tktr <- log(1) # log ktr (/h)
tcl <- log(0.1) # log CL (L/h)
tv <- log(8) # log Vc (L)
eta.ktr ~ 1
eta.cl ~ 0.1
eta.v ~ 0.1
eps.pkprop <- 0.1 # proportional error (SD/mean)
eps.pkadd <- 0.4 # additive error (mg/L)

PD
tc50 <- log(1) #log ec50 (mg/L)
tkout <- log(0.05) #log tkout (/h)
te0 <- log(100) #log e0
eta.c50 ~ .5
eta.kout ~ .1
eta.e0 ~ .1
eps.pdadd <- 100

})
model({

})
}

Turnover model simultaneous PKPD analysis with nlmixr: model block

91 nlmixr development team

#Turnover simultaneous PKPD model
model({
ktr <- exp(tktr + eta.ktr)

cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
c50 = exp(tc50 + eta.c50)
kout = exp(tkout + eta.kout)
e0 = exp(te0 + eta.e0)
emax = 1

cp = central/v
d/dt(depot) = -ktr * depot
d/dt(central)= ktr * trans - cl * cp
d/dt(trans) = ktr * depot - ktr * trans
effect(0) = e0
kin = e0 * kout
PD = 1 - emax * cp/(c50 + cp)
d/dt(effect) = kin * PD - kout * effect

cp ~ prop(eps.pkprop) + add(eps.pkadd) | central
effect ~ add(eps.pdadd) | effect

})
}

nlmixr output: turnover simultaneous PKPD model

nlmixr development team92

VPC for turnover simultaneous PKPD model

nlmixr development team93

VPCs to compare the effect compartment simultaneous model (top row, OFV=1521)

with the turnover simultaneous PKPD model (bottom row, OFV=1331)

nlmixr development team94

Hands-on session VI: running a simultaneous nlmixr PKPD analysis

• Examine the code in PAWS_5.R to run one of the simultaneous PKPD analyses

nlmixr development team95

• RxODE examples so far have only been for a single subject

• The eventTable can define multiple subjects as well: you can even use a NONMEM data
set for this (it has time points and doses)

• Start with a table of doses

• Create an eventTable using et(Doses) and cook these together with simulation time
points using et(0, 150, by = 0.5) with the help of magrittr piping (%>%)

• Create a table of EBEs

Individual graphs with multiple endpoints currently require advanced

RxODE tricks: eventTable for multiple subjects

96 nlmixr development team

#Generate a data.table of doses
Doses <- dataF[AMT > 0, .(ID, TIME, AMT, EVID = 1)]

#Generate an eventTable by combining the doses with the same set of fine-meshed sampling points
for all subjects using the et function and magrittr (%>%) piping
evt <- et(Doses) %>% et(0, 150, by = 0.5)

#Generate a data.table of EBEs: the nlmixr fit object contains EBEs
EBEs_KA1tr1_PDimmemax1_F <- data.table(fitKA1tr1_PDimmemax1_F)

#Take only the first record for each ID:
EBEs_KA1tr1_PDimmemax1_F <-

EBEs_KA1tr1_PDimmemax1_F[!duplicated(ID), .(ID, ktr, cl, v, c50, e0)]

Individual graphs with multiple endpoints currently require advanced

RxODE tricks: simulate…

97 nlmixr development team

#Define the RxODE model
modPKPD0 <- RxODE({
cp = central/v
d/dt(depot) = -ktr * depot
d/dt(trans) = ktr * depot - ktr * trans
d/dt(central)= ktr * trans - cl * cp
effect = e0 * (1 - cp/(c50 + cp))

})

#Solve the system:
res1 <- data.table(rxSolve(modPKPD0, EBEs_KA1tr1_PDimmemax1_F, evt))

#Merge with observed data points
Rdata <- PKPDdata[MDV == 0, .(id = factor(ID), time = TIME, DVID, DV)]
xx1 <- merge(res1, Rdata, by = c("id", "time"), all.x = TRUE)

…and plot

• But if I know Matt, he'll soon update augPred to cover multiple endpoints ☺

nlmixr development team98

#And plot:
xyplot(
DV + effect ~ time | id,
data = xx1[DVID == 2 | is.na(DVID)],
type = c("b", "l"),
col = nlmixCOLS[c(3, 2)],
main = "PCA profiles for the immediate effect simultaneous PKPD model",
cex = c(1, 0.1),
layout=c(8,4),
lwd = 2,
pch = c(19, 1),
xlab = "Time (h)\n",
ylab = "TOF Response (PCA, %)",
as.table = TRUE,
scales = list(alternating = 1)

)

Individual graphs for warfarin PK of the immediate effect simultaneous PKPD model

nlmixr development team99

Individual graphs for PCA profiles for the immediate effect simultaneous PKPD model

nlmixr development team100

Individual graphs for PCA profiles for the simultaneous PKPD effect-compartment model

nlmixr development team101

Individual graphs for PCA profiles for the simultaneous PKPD turnover model

nlmixr development team102

Hands-on session VII: simulate and plot individual profiles using RxODE

• Examine the code in PAWS_5.R to extract EBEs from the simultaneous PKPD model
you ran

• Generate a fine-meshed population eventTable

• Update the RxODE model to match the model you actually ran

• Simulate and plot the results

nlmixr development team103

Upcoming developments

• Implementation of transit models

• Use of a new CRAN package SymEngine to implement symbolic mathematics,
currently still requiring Python/SymPy

• Easier installation without Python dependency

• More efficient calculations, likely increase in speed

• Implementation of solved equations for FOCEI

• Inter-occasion variability

• Mixture models

• Categorical data models (ordered categorical, count data…)

• Parallelisation…

• … ☺

nlmixr development team104

