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Course outline

• Introduction to RxODE

• Introduction to nlmixr

• Hands on with the warfarin PK models (part 1)

• Lunch

• Performance of nlmixr compared to NONMEM (FOCEI) and Monolix (SAEM)

• Advanced capabilities nlmixr

• Hands on with the warfarin PK and PKPD models (part 2)
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RxODE is pharmacometric simulation software as an open-source R 

package

• Written by Wenping Wang and Matt Fidler, available on CRAN1 and GitHub2, and 
described in a tutorial in CPT:PSP3 and with online documentation4

• Simulation of ODEs was already possible in R (using deSolve), but was slow and 
virtually impossible to code with flexible dosing history

• RxODE has rapid execution due to compilation in C 

• RxODE allows fully flexible dosing history

• Stable and mature software for Windows, OS X, Linux

• Requires external compilers (provided by Rtools on Windows)

[1] CRAN: https://cran.r-project.org/web/packages/RxODE

[2] GitHub: https://github.com/nlmixrdevelopment/RxODE

[3] Wang W et al. CPT:PSP (2016) 5, 3–10. 

[4] RxODE packagedown: https://nlmixrdevelopment.github.io/RxODE
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Basic example load the library and define the ODEs
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library(RxODE)

## set up the system of differential equations (ODEs)
odeKA1 <- "
d/dt(depot)   = -ka*depot;                # This is compartment number 1 (depot)
d/dt(central) =  ka*depot-(cl/v)*central; # This is compartment number 2 (central)
C1=central/v;                             # Calculates concentration from amount
"



Compile the model and set the parameter values
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library(RxODE)

## set up the system of differential equations (ODEs)
odeKA1 <- "
d/dt(depot)   = -ka*depot;                # This is compartment number 1 (depot)
d/dt(central) =  ka*depot-(cl/v)*central; # This is compartment number 2 (central)
C1=central/v;                             # Calculates concentration from amount
"

## compile the model
modKA1 <- RxODE(model = odeKA1)

## provide the parameter values to be simulated:
Params <-

c(ka = log(2)/0.5, # 1/h (absorption half-life of 30 minutes)
cl = 0.135,      # L/h
v = 8)           # L



Create an eventTable that defines the doses and the sampling times
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library(RxODE)
## set up the system of differential equations (ODEs)
odeKA1 <- "
d/dt(depot)   = -ka*depot;                # This is compartment number 1 (depot)
d/dt(central) =  ka*depot-(cl/v)*central; # This is compartment number 2 (central)
C1=central/v;                             # Calculates concentration from amount

"
## compile the model
modKA1 <- RxODE(model = odeKA1)
## provide the parameter values to be simulated:
Params <-

c(ka = log(2)/0.5, # 1/h (absorption half-life of 30 minutes)
cl = 0.135,      # L/h
v = 8)           # L

## create an empty event table that stores both dosing and sampling information :
ev <- eventTable()

## add a dose to the event table:
ev$add.dosing(dose = 500) #mg

## add time points to the event table where concentrations will be simulated 
## these actions are cumulative
ev$add.sampling(seq(0, 120, 0.1))



Run the model and plot the results
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library(RxODE)
## set up the system of differential equations (ODEs)
odeKA1 <- "
d/dt(depot)   = -ka*depot;                # This is compartment number 1 (depot)
d/dt(central) =  ka*depot-(cl/v)*central; # This is compartment number 2 (central)
C1=central/v;                             # Calculates concentration from amount

"
## compile the model
modKA1 <- RxODE(model = odeKA1)
## provide the parameter values to be simulated:
Params <-

c(ka = log(2)/0.5, # 1/h (absorption half-life of 30 minutes)
cl = 0.135,      # L/h
v = 8)           # L

## create an empty event table that stores both dosing and sampling information :
ev <- eventTable()
## add a dose to the event table:
ev$add.dosing(dose = 500) #mg
## add time points to the event table where concentrations will be simulated 
## these actions are cumulative
ev$add.sampling(seq(0, 120, 0.1))

## Then solve the system
## The output from rxSolve is a solved RxODE object,
## By making it a data.frame only the simulated values are retained:
Res <- data.frame(rxSolve(modKA1, Params, ev))



Single bolus dose in the first (depot) compartment
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Adding extra doses (expand the existing eventTable): 

three additional infusions in the central compartment
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## Extend the eventTable by adding three infusions to the central compartment
## Remember: updates to the eventTable are cumulative

ev$add.dosing(
dose = 250,           #mg
nbr.doses = 3,        #add three doses
dosing.to = 2,        #add them to the second ODE in the model (=central)
dosing.interval = 12, #h; set the doses 12 hours apart
rate = 125,           #mg/h; infuse at a rate of 125 mg/h, resulting in 2-hour infusions
start.time = 36 #h; have the three doses start at 36h

)

Res <- data.frame(rxSolve(modKA1, Params, ev))



Multiple dose in different compartments

Only the first dose goes into the depot (first) compartment
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Add a transit compartment…
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odeKA1trans <- "
d/dt(depot)   = -ka*depot;
d/dt(central) =  ktr*trans-(cl/v)*central; # update to central: input from trans
d/dt(trans)   =  ka*depot-ktr*trans;       # transit compartment between depot and central
C1=central/v;

"

## compile the model
modKA1trans <- RxODE(model = odeKA1trans)

## provide the extra ktr parameter:
Params2 <- c(

ka = log(2)/0.5,  # 1/h (absorption half-life of 30 minutes)
cl = 0.135,       # L/h
v = 8,            # L
ktr = log(2)/5)   # 1/h (transit half-life of 5 hours)

## the eventTable does not have to change
Res <- data.frame(rxSolve(modKA1trans, Params2, ev))

## if the trans compartment had been put as second compartment above, 
## the eventTable would need an update to infuse in compartment 3 instead



...adding a transit compartment between depot and central
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Or with five transit compartments and only bolus doses in the depot…
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odeKA5trans <- "
d/dt(depot)   = -ktr*depot;
d/dt(central) =  ktr*trans5-(cl/v)*central; # update to central: input from trans5
d/dt(trans1)  =  ktr*depot-ktr*trans1;      # use same constant for every compartment
d/dt(trans2)  =  ktr*trans1-ktr*trans2;
d/dt(trans3)  =  ktr*trans2-ktr*trans3;
d/dt(trans4)  =  ktr*trans3-ktr*trans4;
d/dt(trans5)  =  ktr*trans4-ktr*trans5;
C1=central/v;

"

ev3 <- eventTable()
ev3$add.dosing(dose = 500) # mg; 1st bolus
ev3$add.dosing(

dose = 250,            # mg
nbr.doses = 3, # 3 additional doses (bolusses because rate is absent so rate=0)
dosing.interval = 12,  # h; at 12 hour intervals
dosing.to = 1,         # dosed into depot (compartment 1)
start.time = 36 # h; starting at 36 hours

)
ev3$add.sampling(seq(0, 120, 0.1))

Params3 <-
c(ktr = log(2)/1, # use same constant for every compartment
cl = 0.135,
v = 8)

modKA5trans <- RxODE(model = odeKA5trans)

Res <- data.frame(rxSolve(modKA5trans, Params3, ev3))



...adding 5 transit compartments between depot and central 

and giving 4 bolus doses in the 1st (depot) compartment
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Hands-on session I: RxODE simulations

• Make sure you can either access the Otago server at 
https://student.desktop.otago.ac.nz/vpn/index.html or run your own nlmixr 
installation

• Examine the code in PAWS_1.R to run pre-programmed simulations and try out your 
own variations
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You need to simulate before you can estimate

• With simulation covered, you can start to think about estimation

• Combine the simulation core with estimation routines and you get:

nlmixr!
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nlmixr is an open-source R package

• Written by Wenping Wang and Matt Fidler, and available on CRAN1 and GitHub2:

• builds on RxODE

• combined with nlme, SAEM, and FOCEI estimation routines, provides an R package for 
parameter estimation in nonlinear mixed effect models

• under very active development!

• nlmixr is completely free and open, and does not depend on any other commercial 
tool such as NONMEM or Monolix

• nlmixr provides an efficient and versatile way to specify pharmacometric models 
(both closed-form and ODEs) and dosing scenarios, with rapid execution due to 
compilation in C 

[1] https://cran.r-project.org/web/packages/nlmixr
[2] https://github.com/nlmixrdevelopment/nlmixr
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nlmixr is an open-source R package

• Models are defined using a unified user interface (UUI): common input and output 
structure for the various estimation algorithms

• xpose.nlmixr1 written by Justin Wilkins provides linkage to the new Xpose package2, written 
by Ben Guiastrennec, feeding the uniform output into a highly flexible diagnostics package

• The shinyMixR3 project management tool written by Richard Hooijmaijers and Teun Post 
provides an interface to nlmixr from both the R command line and a user-friendly browser-
based Shiny dashboard application 

• nlmixr requires access to compilers (e.g. using Rtools) and Python: both a full-package 
windows installer is available4, and instructions on managing your own installation5

• Documentation is available in the form of a bookdown (nlmixr.github.io) written and 
curated by Teun Post

• Runs on Linux, Windows, and OS X

[1] https://github.com/nlmixrdevelopment/xpose.nlmixr
[2] https://CRAN.R-project.org/package=xpose
[3] https://github.com/RichardHooijmaijers/shinyMixR
[4] https://github.com/nlmixrdevelopment/nlmixr/releases/

[5] https://nlmixrdevelopment.github.io/nlmixr
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Defining nlmixr models

19

• Models are defined using a function containing an initialisation block (ini) and a 
model definition block (model)

nlmixr development team

One.comp.KA.solved <- function() {
ini({
# Where initial conditions/variables are specified

})
model({
# Where the model is specified

})
}



Defining nlmixr models

20

• The ini block defines the parameters 

• Thetas and residual error defined using assign operators (<- or =)

• Etas defined using a model formula (~)

• Parameter names, starting values, labels (using #), bounds for some estimation 
routines (like FOCEI)
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One.comp.KA.solved <- function() {
ini({
# Where initial conditions/variables are specified
lka  <- log(1.15)  #log ka (1/h)
lcl  <- log(0.135) #log Cl (L/h)
lv   <- log(8)     #log V (L)
prop.err <- 0.15   #proportional error (SD/mean)
add.err  <- 0.6    #additive error (mg/L)
eta.ka ~ 0.5 #IIV ka
eta.cl ~ 0.1 #IIV cl
eta.v  ~ 0.1 #IIV v

})
model({

})
}



Defining nlmixr models

21

• The model block defines 

• the relationship between thetas and etas

• the model structure using either closed-form solutions or ODEs

• the residual error structure, and where it is applied
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One.comp.KA.solved <- function() {
ini({

})
model({
# Where the model is specified
cl <- exp(lcl + eta.cl)
v  <- exp(lv + eta.v)
ka <- exp(lka + eta.ka)
## solved system example
## where residual error is assumed to follow proportional and additive error
linCmt() ~ prop(prop.err) + add(add.err)

})
}



Running nlmixr models: the full model
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One.comp.KA.solved <- function() {
ini({
# Where initial conditions/variables are specified
lka  <- log(1.15)  #log ka (1/h)
lcl  <- log(0.135) #log Cl (L/h)
lv   <- log(8)     #log V (L)
prop.err <- 0.15   #proportional error (SD/mean)
add.err  <- 0.6    #additive error (mg/L)
eta.ka ~ 0.5 #IIV ka
eta.cl ~ 0.1 #IIV cl
eta.v  ~ 0.1 #IIV v

})
model({
# Where the model is specified
cl <- exp(lcl + eta.cl)
v  <- exp(lv + eta.v)
ka <- exp(lka + eta.ka)
## solved system example
## where residual error is assumed to follow proportional and additive error
linCmt() ~ prop(prop.err) + add(add.err)

})
}



Running nlmixr models: check the model code
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## Check the model and some of the assumptions made by nlmixr 
## note assumption that AMT goes into CMT=1 is not shown
nlmixr(One.comp.KA.solved)



Running nlmixr models with the nlmixr command
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## estimate parameters using nlmixr:
fitOne.comp.KA.solved_S <-

nlmixr(
One.comp.KA.solved,        #the model definition
PKdata,                    #the data set
est = "saem",              #the estimation algorithm (SAEM)

#the SAEM minimisation options:
saemControl(nBurn = 200,   #200 SAEM burn-in iterations (the default)

nEm   = 300,   #300 EM iterations (the default)
print = 50),   #only print every 50th estimation step

tableControl(cwres = TRUE) #calculates NONMEM-style conditional weighted residuals for diagnostics
)

## results are stored in the nlmixr object and can be viewed:
fitOne.comp.KA.solved_S



nlmixr output for SAEM
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The labels in the ini block end up in the output, and the log-transformed 

parameters are returned with a back-transformation and 95%CIs
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Running nlmixr models: save the object, and examine parameter trace 

plots when using SAEM to check convergence
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## results are stored in the nlmixr object and can be viewed:
fitOne.comp.KA.solved_S

## and saved for future use or reference:
save(fitOne.comp.KA.solved_S, file = "fitOne.comp.KA.solved_S.Rdata")

## and for SAEM, convergence can be checked using a parameter trace plot:
traceplot(fitOne.comp.KA.solved_S)



Traceplot for SAEM parameter estimates using traceplot command
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nlmixr is linked to Ben Guiastrennec's xpose* package that uses ggplot2

*https://uupharmacometrics.github.io/xpose/
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## the nlmixr object can be transformed into an xpose object to allow diagnostics with the new xpose package
## the link between nlmixr and xpose is provided by the xpose.nlmixr package
## only xpose_data_nlmixr is from xpose.nlmixr 
## all further commands (see cheatsheet)  are from the xpose package

xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)

## this can also be used to generate trace plots (parameters vs iterations:)
prm_vs_iteration(xpdb.1s)
## to remove the path to the script from the plot use:
prm_vs_iteration(xpdb.1s,caption=NULL)

https://uupharmacometrics.github.io/xpose/


Traceplot for SAEM parameter estimates using xpose
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DV vs conditional population predictions (CPRED) using xpose
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xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)
## dv vs pred plot:
dv_vs_pred(xpdb.1s, 

caption = NULL)



DV vs PRED using xpose

nlmixr development team32

# by default model typical predictions (PRED) are assigned to CPRED (conditional population predictions):
list_vars(xpdb.1s)

# if you want this to be PRED instead, these can be updated, either using 'standard' syntax:
xpdb.1s<-set_var_types(xpdb.1s,pred = 'PRED')
# or using magrittr piping type code:
xpdb.1s<-xpdb.1s %>% set_var_types(pred = 'PRED')



DV vs PRED using xpose
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xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)
## plot PRED instead of CPRED:
xpdb.1s<-xpdb.1s %>% set_var_types(pred = 'PRED')
## dv vs pred plot:
dv_vs_pred(xpdb.1s, 

caption = NULL)



DV vs IPRED using xpose
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xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)
## dv vs ipred plot:
dv_vs_ipred(xpdb.1s, 

caption = NULL)



Conditional weighted residuals vs. time using xpose 
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xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)
## CWRES vs time:
res_vs_idv(xpdb.1s,           #the xpose object

res = "CWRES",     #examine CWRES
idv = "TIME",      #as a function of time
caption = NULL)



Absolute values of individual weighted residuals vs. time
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xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)
## |IWRES| vs time:
absval_es_vs_idv(xpdb.1s,     #the xpose object

res = "IWRES",     #examine |IWRES| 
idv = "TIME",      #as a function of time
caption = NULL)

## Issue with absorption?



nlmixr is linked to Ron Keizer's vpc* package

*http://vpc.ronkeizer.com/
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## nlmixr comes with its own built-in vpc functionality that uses Ron Keizer's vpc package
## see the cheatsheet for further options
vpc_ui(
fitOne.comp.KA.solved_S,        #the nlmixr object
n = 500,                        #number of trials simulated using estimated 

# parameters and study sampling structure
show = list(obs_dv = TRUE),     #additional items to show, like the observations
xlab = "Time (h)",              #x-axis label
ylab = "Concentration (mg/L)",  #y-axis label
title = "VPC for first order absorption PopPK model"

)

https://uupharmacometrics.github.io/xpose/


VPC for the base model on linear scale...
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...and on log scale. It's super fast ☺
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## or with a log y-axis starting at 0.5
vpc_ui(

fitOne.comp.KA.solved_S,
n = 500,
show = list(obs_dv = TRUE),
xlab = "Time (h)",
ylab = "Concentration (mg/L)",
title = "VPC for first order absorption PopPK model with log 

y-axis",
log_y = TRUE,            #to request a log y-axis
log_y_min = 0.5 #starting at 0.5

)



nlmixr can generate individual graphs using xpose or augPred
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## Individual fits can be generated using using xpose:
ind_plots(xpdb.1s,caption = NULL,ncol = 4,nrow = 4)
## ...use the arrows in the plot window to examine the earlier curves

## Individual fits can also be generated using augPred (augmented predictions)
## that provides smooth profiles by interpolating the predictions between observations:
plot(augPred(fitOne.comp.KA.solved_S))
## ...use the arrows in the plot window to examine the earlier curves



Individual fits can be generated using xpose
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Individual fits can also be generated using augPred (augmented predictions) that 

provides smooth profiles by interpolating the predictions between observations
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use augPred output to plot using your favourite package…
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#or the augPred output can be plotted to your liking, for instance using ggplot2 or the lattice function xyplot:
indivpk<-augPred(fitOne.comp.KA.solved_S)
nlmixCOLS <- c("#28466A","#8DB6CD","#B40000) ## specify array of colours for curves

xyplot(
values~time|id,          ## plot the variable values by time and make a separate panel for each id
data=indivpk,            ## data source with smooth interpolated predictions and observations
groups=ind,              ## make separate curves by ind that separates Observed data, 

## Individual predictions and Population predictions
layout=c(8,4),           ## arrange as 8 columns and 4 rows
type=c("l","l","p"),     ## represent these three by a line, a line and only markers (l=line, p=points)
col=nlmixCOLS[c(2,1,3)], ## colours for each curve
cex=c(0.1,0.1,1),        ## character size for the markers
lwd=c(2,2,0.1),          ## line width of the lines
pch=19,                  ## use closed circles as marker
xlab="Time (hr)\n",      ## x-axis label
ylab="Warfarin (mg/L)",  ## y-axis label
as.table=TRUE,           ## have the first plot at the top left (otherwise plot 1 starts at the lower left corner)
scales=list(alternating=1),  ## have axis labels at left and bottom (and not alternating)
main="First order-absorption linear elimination", ## title for plot
auto.key=list(adj=1,col=nlmixCOLS[c(2,1,3)],columns=3,space="bottom",rectangles=FALSE,points=FALSE) ## key for curves

)



..like lattice
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Hands-on session II: running nlmixr and diagnostics

• Examine the code in PAWS_2.R to run a pre-programmed SAEM analysis with a 
solved system and its diagnostics

• Stop at nlmixr analysis Part 2
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Solved systems and ODEs…

46

• Using solved-system code:

• For a solved system, model structure is automatically derived (!) from the parameter 
names in the ini block

• Using ODEs:

• ODEs are much more flexible but also more time-consuming

• Solved systems are currently only available for SAEM and nlme, but FOCEI will follow 
soon; ODEs are available for all estimation routines
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linCmt() ~ prop(prop.err) + add(add.err)

# RxODE-style differential equation definition
d/dt(gut)    = -ka * gut   
d/dt(central) = ka * gut - (cl / v) * central
## Concentration is calculated
cp = central / v
# And is assumed to follow proportional and additive error
cp ~ prop(prop.err) + add(add.err)



Running nlmixr for a system of ODEs using FOCEI
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PK001 <- function() {
ini({
# Where initial conditions/variables are specified
lka  <- log(1.15)  #log ka (/h)
lcl  <- log(0.135) #log Cl (L/hr)
lv   <- log(8)     #log V (L)
prop.err <- 0.15   #proportional error (SD/mean)
add.err  <- 0.6    #additive error (mg/L)
eta.ka ~ 0.5 #IIV ka
eta.cl ~ 0.1 #IIV cl
eta.v  ~ 0.1   #IIV v

})
model({
# Where the model is specified
cl <- exp(lcl + eta.cl)
v  <- exp(lv + eta.v)
ka <- exp(lka + eta.ka)
# RxODE-style differential equation definition
d/dt(gut)    = -ka * gut
d/dt(center) = ka * gut - (cl / v) * center
## Concentration is calculated
cp = center / v
## And is assumed to follow proportional and additive error
cp ~ prop(prop.err) + add(add.err)

})
}

fitPK001_F <- nlmixr(PK001, NMdata, est = "focei")



nlmixr output for FOCEI with ODEs
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Hands-on session III: running nlmixr with ODEs and perform model 

development

• Start at nlmixr analysis Part 2

• Examine the code in PAWS_2.R to run a pre-programmed FOCEI analysis with ODEs

• Examine the goodness of fit plots and implement alternative models for absorption 
(like one or more transit compartments, lag-time…)
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Running nlmixr: 1 transit compartment
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## 5 transit compartments
One.comp.transit <- function() {

ini({
# Where initial conditions/variables are specified
lktr  <- log(1.15) #log transit rate constant (/h)
lcl  <- log(0.135) #log Cl (L/h)
lv   <- log(8)     #log V (L)
prop.err <- 0.15   #proportional error (SD/mean)
add.err  <- 0.6 #additive error (mg/L)
eta.ktr ~ 0.5 #IIV ktr                
eta.cl ~ 0.1 #IIV cl
eta.v  ~ 0.1 #IIV v 

})
model({
# Where the model is specified
ktr <- exp(lktr + eta.ktr)
cl <- exp(lcl + eta.cl)
v  <- exp(lv + eta.v)
## ODE example
d/dt(depot)   =-ktr*depot
d/dt(central) = ktr*trans – (cl/v)*central
d/dt(trans)   = ktr*(depot - trans) 
## where residual error is assumed to follow proportional and additive error
central ~ prop(prop.err) + add(add.err)

})}



nlmixr output: 1 transit compartment with ODEs using FOCEI
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VPC for one compartment model with a transit compartment using FOCEI
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|IWRES| by time for first order absorption model with 1 transit 

compartment using FOCEI
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Running nlmixr: 5 transit compartments
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## 5 transit compartments
KA1tr5ode <- function() {

ini({
# Where initial conditions/variables are specified
lktr  <- log(1.15) #log transit rate constant (/h)
lcl  <- log(0.135) #log Cl (L/h)
lv   <- log(8)     #log V (L)
prop.err <- 0.15   #proportional error (SD/mean)
add.err  <- 0.6 #additive error (mg/L)
eta.ktr ~ 0.5 #IIV ktr                
eta.cl ~ 0.1 #IIV cl
eta.v  ~ 0.1 #IIV v 

})
model({
# Where the model is specified
ktr <- exp(lktr + eta.ktr)
cl <- exp(lcl + eta.cl)
v  <- exp(lv + eta.v)
## ODE example
d/dt(depot)   =-ktr*depot
d/dt(central) = ktr*transit5 - cl* central/v
d/dt(transit1)= ktr*(depot - transit1) 
d/dt(transit2)= ktr*(transit1 - transit2) 
d/dt(transit3)= ktr*(transit2 - transit3) 
d/dt(transit4)= ktr*(transit3 - transit4) 
d/dt(transit5)= ktr*(transit4 - transit5) 
## where residual error is assumed to follow proportional and additive error
central ~ prop(prop.err) + add(add.err)

})}



nlmixr output: 5 transit compartments with ODEs using SAEM
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VPC for first order absorption with 5 transit compartments using SAEM
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nlmixr output: 5 transit compartments with ODEs using FOCEI

Change in OFV compared to model with 1 transit compartment: -90.82
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VPC for first order absorption with 5 transit compartments using FOCEI

nlmixr development team58



|IWRES| by time for first order absorption model with 5 transit 

compartments using FOCEI
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Comparison of GOF plots for different absorption models
No transit compartment (left), one transit compartment (middle), 5 transit compartments (right)
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Objective function values and estimation algorithms

• When you request cwres=TRUE for an SAEM analysis, nlmixr calculates an FOCEI-
type objective function value, and FOCEI-type conditional weighted residuals 

• However, this does not mean that they can be formally (or even informally)  
compared: as with NONMEM, comparisons should only ever be performed with 
nested models using the same estimation algorithm

• Differences in OFV are not an indication of superiority of estimates obtained from 
one algorithm over another
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nlmixr can generate empirical Bayes estimates for Bayesian feedback:

individual EBEs for a new data set using existing population parameters

62

• Useful in a therapeutic drug monitoring 
setting 

• Or for generating exposure estimates 
with a particularly nasty model that you 
do not want to refit on new data ☺
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KA1tr5posthoc <- function() {
ini({
# Specify previously obtained population estimates (e.g. from NONMEM or nlmixr)
lktr <- 1.18994619 #log ktr (/h)
lcl  <- -2.01737477 #log Cl (L/h)
lv   <- 2.06631620 #log V (L)
prop.err <- 0.07883633 #proportional error (SD/mean)
add.err <- 0.37249666  #additive error (mg/L)
eta.ktr ~ 0.2532964 #IIV ktr
eta.cl ~ 0.08073339 #IIV Cl
eta.v ~ 0.04490733 #IIV V

})
model({
cl  <- exp(lcl + eta.cl)
v   <- exp(lv + eta.v)
ktr <- exp(lktr + eta.ktr)

d/dt(trns1) = -ktr * trns1
d/dt(trns2) = ktr * trns1 - ktr * trns2
d/dt(trns3) = ktr * trns2 - ktr * trns3
d/dt(trns4) = ktr * trns3 - ktr * trns4
d/dt(trns5) = ktr * trns4 - ktr * trns5
d/dt(central) = ktr * trns5 - (cl/v) * central
cp = central/v
cp ~ prop(prop.err) + add(add.err)

})
}

fitKA1tr5_Fph <- nlmixr(KA1tr5posthoc, PKdata, 
est = "posthoc") # Specify posthoc as estimation method



Individual graphs for the five transit compartment model estimated using Bayesian 

feedback; perfect fit even though there was no actual parameter estimation
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Parameterisation and mu-referencing

64

• For SAEM, parameters must be defined using 'mu-referencing’

• This means that inter-individual variability parameters must be added onto 
population parameters

• This implies estimating log-parameters with the IIV added on the log-scale

• For FOCEI, mu-referencing is not strictly required, but is shown to provide superior 
estimation results

• For a binary covariate (e.g. sex 0/1), the back-transformed estimate is a fold-change 
that can be re-written as a percentage change
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Corresponding nlmixr code
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## One compartment transit model with Sex on V
KAtr1_sexV <- function() {

ini({
lktr <- log(1.15)  #log k transit (/h)
lcl  <- log(0.135) #log CL (L/h)
lv   <- log(8)     #log V (L)
Sex_V <- 0.1 #log Sex on v
prop.err <- 0.15   #proportional error (SD/mean)
add.err <- 0.6     #additive error (mg/L)
eta.ktr ~ 0.5 #IIV ktr
eta.cl ~ 0.1 #IIV Cl
eta.v ~ 0.1 #IIV V

})
model({

#Sex on volume
cl <- exp(lcl + eta.cl)
v  <- exp(lv + eta.v + Sex_V * SEX) #the SEX covariate is 0 or 1 in the data set
ktr <- exp(lktr + eta.ktr)
d/dt(depot) = -ktr * depot
d/dt(central) = ktr * trans - (cl/v) * central
d/dt(trans)   = ktr * depot - ktr * trans
cp = central/v
cp ~ prop(prop.err) + add(add.err)

})



nlmixr output: mu-referenced sex on V (log-scale)
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Parameterisation and mu-referencing

67

• For a binary covariate (e.g. sex 0/1; female/males), the back-transformed estimate is 
a fold-change that can be re-written as a percentage change

• The estimated 0.394 (95%CI: -0.0847 / 0.872) translates to a fold-change estimate of 
1.482 (95%CI: 0.919/ 2.392) which corresponds to a change of 
48.2% (95%CI: -8.1% / 139.2%) for males
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mu-referencing and allometric scaling

68

• For a standard allometric equation we would use: 

• 𝐶𝐿𝑖 = 𝐶𝐿𝑃𝑜𝑝 ∙ ൗ𝑊𝑇𝑖
70

Τ3 4
∙ 𝑒𝜂

• Take the log on both sides

• 𝑙𝑜𝑔 𝐶𝐿𝑖 = 𝑙𝑜𝑔 𝐶𝐿𝑃𝑜𝑝 + 𝑙𝑜𝑔 ൗ𝑊𝑇𝑖
70

Τ3 4
+ 𝑙𝑜𝑔 𝑒𝜂

• 𝑙𝑜𝑔 𝐶𝐿𝑖 = 𝑙𝑜𝑔 𝐶𝐿𝑃𝑜𝑝 + Τ3 4 ∙ 𝑙𝑜𝑔 ൗ𝑊𝑇𝑖
70 + 𝜂

• And back-transforming:

• 𝐶𝐿𝑖 = 𝑒
𝑙𝑜𝑔 𝐶𝐿𝑃𝑜𝑝 + Τ3 4∙𝑙𝑜𝑔 ൗ𝑊𝑇𝑖

70 +𝜂
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Corresponding nlmixr code

69

• Code is most stable if transformations are carried out in the data file instead of in the 
model code, especially for SAEM: 
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## Using standard R syntax:
PKdata$logWT70 <- log(PKdata$WT/70)

## Or using data.table syntax
PKdata[,logWT70:=log(WT/70)]



Corresponding nlmixr code: allometric scaling

70 nlmixr development team

One.comp.transit.allo <- function() {
ini({
lktr <- log(1.15)  #log k transit (/h)
lcl  <- log(0.135) #log Cl (L/hr)
lv   <- log(8)     #log V (L)
ALLC <- fix(0.75)  #allometric exponent cl
ALLV <- fix(1.00)  #allometric exponent v
prop.err <- 0.15   #proportional error (SD/mean)
add.err <- 0.6     #additive error (mg/L)
eta.ktr ~ 0.5 #IIV ktr
eta.cl ~ 0.1 #IIV Cl
eta.v ~ 0.1 #IIV V

})
model({

#Allometric scaling on weight
cl <- exp(lcl + eta.cl + ALLC * logWT70)
v  <- exp(lv + eta.v + ALLV * logWT70)
ktr <- exp(lktr + eta.ktr)
d/dt(depot)   = -ktr * depot
d/dt(central) = ktr * trans - (cl/v) * central
d/dt(trans)   = ktr * depot - ktr * trans
cp = central/v
cp ~ prop(prop.err) + add(add.err)

})
}



nlmixr output: allometric scaling ODEs using FOCEI

Change in OFV compared to model without allometric scaling: -29.49
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VPC for one compartment model with a transit compartment and allometric scaling 

using FOCEI
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nlmixr output: allometric scaling ODEs using FOCEI

Freely estimated exponents: drop of only 2.11 points
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Hands-on session IV: running an nlmixr posthoc analysis and 

implementing covariates using mu-referencing

• Examine the code in PAWS_4.R to run a posthoc analysis

• Examine the code in PAWS_4.R to run a covariate analysis with additive on log-scale 
covariate implementation

• Binary covariate (sex)

• Continuous covariate (weight)

• Modify the allometrically scaled model with fixed exponents to examine what 
happens when you set them free
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PKPD analysis with nlmixr: sequential estimation

75

• First approach: use EBEs from a previous PK model to define PK profiles and estimate 
PKPD relationship

• Extract EBEs from nlmixr object and merge to PKPD data file
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load(file = "fitOne.comp.transit.allo_F.Rdata")
#Use the one compartment transit model to start the PD analysis
EBEs <- as.data.table(fitOne.comp.transit.allo_F)
EBEs <- EBEs[!duplicated(ID), .(ID = as.numeric(as.character(ID)),

IKTR = ktr, ICL = cl, IV = v)]
PKPDdata <- fread("warfarin_dat.csv")

#Change variable names to upper case (not strictly necessary)
setnames(PKPDdata, names(dataF), toupper(names(dataF)))

#Generate MDV data items
PKPDdata[, MDV := ifelse(is.na(DV), 1, 0)]
PKPDdata[, MDV := ifelse(AMT > 0, 1, MDV)]

#Merge data with PK EBEs
PDdata <- merge(PKPDdata, EBEs, by = "ID", all.x = TRUE)

#Mark the PK measurements from the file to not be analysed
PDdata[, MDV := ifelse(DVID == 1 & AMT == 0, 1, MDV)]



PKPD analysis with nlmixr: define turnover model using PK EBEs
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KA1tr1IPP_PDtoemax1 <- function() {
ini({
tc50  <- log(1)    #log ec50 (mg/L)
tkout <- log(0.05) #log tkout (/h)
te0   <- log(100)  #log e0
eta.c50  ~ .5
eta.kout ~ .1
eta.e0 ~ .1
eps.pdadd <- 100

})
model({
c50 = exp(tc50 + eta.c50)
kout = exp(tkout + eta.kout)
e0 = exp(te0 + eta.e0)
# PK parameters from input data set
ktr = IKTR
cl = ICL
v = IV
cp = central/v
PD = 1 - cp/(c50 + cp)
effect(0) = e0
kin = e0 * kout
d/dt(depot)   = -ktr * depot
d/dt(central) = ktr * trans - cl/v * central
d/dt(trans)   = ktr * depot - ktr * trans
d/dt(effect)  = kin * PD - kout * effect
effect ~ add(eps.pdadd)

})
}



VPC turnover Emax PD model with PK using EBEs
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Individual graphs for turnover Emax PD model with PK using EBEs
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Hands-on session V: running a sequential nlmixr PKPD analysis

• Examine the code in PAWS_5.R to generate a data file with EBEs to describe the PK-
part of the PKPD model

• Run the sequential PKPD analysis
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PKPD analysis with nlmixr: simultaneous estimation

80

• Second approach: estimate PK and PD simultaneously

• The source of observations is identified using either a CMT data item or a DVID data 
item

• CMT defines the compartment where data are observed

• DVID is coded as 1, 2 to identify the first and second type of observation as presented in 
the model code
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Immediate effect simultaneous PKPD analysis with nlmixr: ini block

81 nlmixr development team

#Immediate effect
KA1tr1_PDimmemax1 <- function() {

ini({
## PK
tktr <- log(1)   # log ktr (/h)
tcl  <- log(0.1) # log CL (L/h)
tv   <- log(8)   # log Vc (L)
eta.ktr ~ 1
eta.cl ~ 0.1
eta.v ~ 0.1
eps.pkprop <- 0.1 #proportional error (SD/mean)
eps.pkadd <- 0.4  #additive error (mg/L)

## PD
tc50  <- log(1)    #log ec50 (mg/L)
te0   <- log(100)  #log e0
eta.c50  ~ .5
eta.e0 ~ .1
eps.pdadd <- 100

})
model({

})
}



Immediate effect simultaneous PKPD analysis with nlmixr: model block
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#Immediate effect
model({
ktr <- exp(tktr + eta.ktr)
cl  <- exp(tcl + eta.cl)
v   <- exp(tv + eta.v)

c50  = exp(tc50 + eta.c50)
e0   = exp(te0 + eta.e0)

cp           = central/v
d/dt(depot)  = -ktr * depot
d/dt(central)= ktr * trans - cl * cp
d/dt(trans)  = ktr * depot - ktr * trans
effect       = e0 * (1 - cp/(c50 + cp))

cp ~ prop(eps.pkprop) + add(eps.pkadd) | central
effect ~ add(eps.pdadd) | effect

})
}



Simultaneous PKPD analysis with nlmixr: examine defined model
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nlmixr(KA1tr1_PDimmemax1) # Show initial estimates and model:



nlmixr output: immediate effect simultaneous PKPD model
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VPC for immediate effect simultaneous PKPD model
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Effect compartment simultaneous PKPD analysis with nlmixr: ini block
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#Effect compartment model
KA1tr1_PDceemax <- function() {

ini({
## PK
tktr <- log(1)   # log ktr (/h)
tcl  <- log(0.1) # log CL (L/h)
tv   <- log(8)   # log Vc (L)
eta.ktr ~ 1
eta.cl ~ 0.1
eta.v ~ 0.1
eps.pkprop <- 0.1 #proportional error (SD/mean)
eps.pkadd <- 0.4  #additive error (mg/L)

## PD
tc50  <- log(1)    #log ec50 (mg/L)
tkout <- log(0.05) #log tkout (/h)
te0   <- log(100)  #log e0
eta.c50  ~ .5
eta.kout ~ .1
eta.e0 ~ .1
eps.pdadd <- 100

})
model({

})
}



Effect compartment simultaneous PKPD analysis with nlmixr: model block
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#Effect compartment model
model({

ktr <- exp(tktr + eta.ktr)
cl  <- exp(tcl + eta.cl)
v   <- exp(tv + eta.v)

c50  = exp(tc50 + eta.c50)
kout = exp(tkout + eta.kout)
e0   = exp(te0 + eta.e0)
emax = 1

cp           = central/v
d/dt(depot)  = -ktr * depot
d/dt(central) = ktr * trans - cl * cp
d/dt(trans)  = ktr * depot - ktr * trans
d/dt(ce)     = kout * (cp - ce)

effect       = e0 * (1 - emax * ce/(c50 + ce))

cp ~ prop(eps.pkprop) + add(eps.pkadd) | central
effect ~ add(eps.pdadd) | effect

})
}



nlmixr output: effect compartment simultaneous PKPD model
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VPC for effect compartment simultaneous PKPD model 
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Turnover model simultaneous PKPD analysis with nlmixr: ini block
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#Turnover simultaneous PKPD model
KA1tr1IPP_PDtoemax <- function() {

ini({
## PK
tktr <- log(1)   # log ktr (/h)
tcl  <- log(0.1) # log CL (L/h)
tv   <- log(8)   # log Vc (L)
eta.ktr ~ 1
eta.cl ~ 0.1
eta.v ~ 0.1
eps.pkprop <- 0.1 # proportional error (SD/mean)
eps.pkadd <- 0.4  # additive error (mg/L)

## PD
tc50  <- log(1)    #log ec50 (mg/L)
tkout <- log(0.05) #log tkout (/h)
te0   <- log(100)  #log e0
eta.c50  ~ .5
eta.kout ~ .1
eta.e0 ~ .1
eps.pdadd <- 100

})
model({

})
}



Turnover model simultaneous PKPD analysis with nlmixr: model block
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#Turnover simultaneous PKPD model
model({
ktr <- exp(tktr + eta.ktr)

cl  <- exp(tcl + eta.cl)
v   <- exp(tv + eta.v)
c50  = exp(tc50 + eta.c50)
kout = exp(tkout + eta.kout)
e0   = exp(te0 + eta.e0)
emax = 1

cp           = central/v
d/dt(depot)  = -ktr * depot
d/dt(central)= ktr * trans - cl * cp
d/dt(trans)  = ktr * depot - ktr * trans
effect(0)    = e0
kin          = e0 * kout
PD           = 1 - emax * cp/(c50 + cp)
d/dt(effect) = kin * PD - kout * effect

cp ~ prop(eps.pkprop) + add(eps.pkadd) | central
effect ~ add(eps.pdadd) | effect

})
}



nlmixr output: turnover simultaneous PKPD model
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VPC for turnover simultaneous PKPD model 
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VPCs to compare the effect compartment simultaneous model (top row, OFV=1521) 

with the turnover simultaneous PKPD model (bottom row, OFV=1331)
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Hands-on session VI: running a simultaneous nlmixr PKPD analysis

• Examine the code in PAWS_5.R to run one of the simultaneous PKPD analyses
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• RxODE examples so far have only been for a single subject

• The eventTable can define multiple subjects as well: you can even use a NONMEM data 
set for this (it has time points and doses)

• Start with a table of doses

• Create an eventTable using et(Doses) and cook these together with simulation time 
points using et(0, 150, by = 0.5) with the help of magrittr piping (%>%)

• Create a table of EBEs

Individual graphs with multiple endpoints currently require advanced 

RxODE tricks: eventTable for multiple subjects
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#Generate a data.table of doses
Doses <- dataF[AMT > 0, .(ID, TIME, AMT, EVID = 1)]

#Generate an eventTable by combining the doses with the same set of fine-meshed sampling points 
for all subjects using the et function and magrittr (%>%) piping
evt <- et(Doses) %>% et(0, 150, by = 0.5)

#Generate a data.table of EBEs: the nlmixr fit object contains EBEs
EBEs_KA1tr1_PDimmemax1_F <- data.table(fitKA1tr1_PDimmemax1_F)

#Take only the first record for each ID:
EBEs_KA1tr1_PDimmemax1_F <-

EBEs_KA1tr1_PDimmemax1_F[!duplicated(ID), .(ID, ktr, cl, v, c50, e0)]



Individual graphs with multiple endpoints currently require advanced 

RxODE tricks: simulate…
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#Define the RxODE model
modPKPD0 <- RxODE({
cp           = central/v
d/dt(depot)  = -ktr * depot
d/dt(trans)  = ktr * depot - ktr * trans
d/dt(central)= ktr * trans - cl * cp
effect       = e0 * (1 - cp/(c50 + cp))

})

#Solve the system:
res1 <- data.table(rxSolve(modPKPD0, EBEs_KA1tr1_PDimmemax1_F, evt))

#Merge with observed data points
Rdata <- PKPDdata[MDV == 0, .(id = factor(ID), time = TIME, DVID, DV)]
xx1 <- merge(res1, Rdata, by = c("id", "time"), all.x = TRUE)



…and plot

• But if I know Matt, he'll soon update augPred to cover multiple endpoints ☺
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#And plot:
xyplot(
DV + effect ~ time | id,
data = xx1[DVID == 2 | is.na(DVID)],
type = c("b", "l"),
col = nlmixCOLS[c(3, 2)],
main = "PCA profiles for the immediate effect simultaneous PKPD model",
cex = c(1, 0.1),
layout=c(8,4),
lwd = 2,
pch = c(19, 1),
xlab = "Time (h)\n",
ylab = "TOF Response (PCA, %)",
as.table = TRUE,
scales = list(alternating = 1)

)



Individual graphs for warfarin PK of the immediate effect simultaneous PKPD model
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Individual graphs for PCA profiles for the immediate effect simultaneous PKPD model 
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Individual graphs for PCA profiles for the simultaneous PKPD effect-compartment model 
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Individual graphs for PCA profiles for the simultaneous PKPD turnover model 
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Hands-on session VII: simulate and plot individual profiles using RxODE

• Examine the code in PAWS_5.R to extract EBEs from the simultaneous PKPD model 
you ran

• Generate a fine-meshed population eventTable

• Update the RxODE model to match the model you actually ran

• Simulate and plot the results
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Upcoming developments

• Implementation of transit models

• Use of a new CRAN package SymEngine to implement symbolic mathematics, 
currently still requiring Python/SymPy

• Easier installation without Python dependency

• More efficient calculations, likely increase in speed

• Implementation of solved equations for FOCEI

• Inter-occasion variability

• Mixture models

• Categorical data models (ordered categorical, count data…)

• Parallelisation…

• … ☺
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