
A shiny GUI for nlmixr: shinyMixR

Stockholm, Sweden, June 11th 2019

Mirjam N. Trame
On behalf of the nlmixr development team:

Matt Fidler, Richard Hooijmaijers, Teun Post, Rik Schoemaker,
Mirjam Trame, Justin Wilkins, Yuan Xiong and Wenping Wang

nlmixr and shinyMixR - background

2

There are two main ways of working with nlmixr models:

• Via the nlmixr package
• nlmixr is the engine for running models
• Provides output in a model fit object, which can be read out and approached
• R cannot be used while running models – new R session can be opened
• Model fit object is in the global environment

• Via the shinyMixR package
• Provides a graphical user interface around nlmixr
• Structures a project
• Models are submitted in separate sessions – R can be used while running models
• Model fit object is automatically saved to disk
• Modeling output and models run via nlmixr cannot be imported
• Note: several shinyMixR package functions can also be used interactively on command line

nlmixr development team

nlmixr development team3

shinyMixR https://richardhooijmaijers.github.io/shinyMixR/index.html

https://richardhooijmaijers.github.io/shinyMixR/index.html

Introduction

4

• The shinyMixR package is a graphical user interface (GUI) tool for managing pop PKPD projects with nlmixr
as the estimation engine

• The package is intended to view, edit, run, compare, analyze and report nlmixr models

• It organizes your project – model, data, metadata, settings and results are kept together

• The interface enables browsing between specific project folders

• The application can be started via a shortcut or via the R command line in the project folder

• The interface is created using the shiny and shinydashboard packages

• Note: most functions within the package can also be used in an interactive R session

• The package is open source and is available at: https://richardhooijmaijers.github.io/shinyMixR/index.html

nlmixr development team

https://richardhooijmaijers.github.io/shinyMixR/index.html

Project Structure

5 nlmixr development team

The folder structure of a shinyMixR project is fixed
and should be followed to enable to work with the
package*:

The folder structure is important because:

1. The package monitors changes in specific folders
and keeps track of this in a project object

2. Files are read and saved from specific locations to
disk

3. When working with many models an organized
folder structure is key – model, data, metadata,
setting and results are kept together

*functionality to automatically build the folder structure is present in the package

Project Object

6 nlmixr development team

To manage the information within the project structure, a project object is maintained:

• The object has information regarding the available models, meta data, high level results, etc.

• All changes within a project are monitored/saved to disk in this object:
• When model is changed
• When new results are generated
• When data is deleted

• Within the interface this is done automatically, or using refresh buttons
(e.g. the interface does not “know” when a model is finished and new results are present)

• Note: for an interactive session, in some cases updating of this object can be done using the
get_proj() function

nlmixr and shinyMixR - nuances

7 nlmixr development team

nlmixr – model and nlmixr fit function

m1 <- function() {

ini({

tka <- .5

tcl <- -3.2

…

nlmixr arguments moved to
metadata within the model
code (run1.R model file) –
analogous to NONMEM
$PROBLEM, $DATA, $EST, etc.

shinyMixR stores results in R
data objects (e.g. run1.res.rds)

fit1 <- nlmixr(m1, theo_sd, est="saem", …)

shinyMixR – metadata and run button or run_nmx function

run1 <- function() {

data = "theo_sd" # csv or rds file

desc = "case example base run" # model description

ref = "" # model reference

imp = 1 # model importance

est = "saem" # estimation method

control = list() # est control options

ini({

tka <- .5

tcl <- -3.2

…

run nlmixr()via R or use the Run model(s) widget via shinyMixR

Overview of shinyMixR functionality

8 nlmixr development team

Edit Models Run Models

The edit model(s) widget is used to edit models
within an editor including syntax coloring (using
shinyAce).

It is also possible to create new models using
various templates or to duplicate existing
models.

The run model(s) widget is used to run
models. It is possible to run one or multiple
models at once.

It is also possible to assess the intermediate
output or progress for an nlmixr run.

data in the data folder; models in the model folder

Overview of shinyMixR functionality

9 nlmixr development team

Parameter Estimates GOF Plots

The goodness of fit widget is used to
generate a combination of 4 goodness of fit
plots combined.

By default nlmixr.xpose is used but direct
ggplot2 can also be used directly by
specifying this in the settings widget.

The parameter estimates widget is used to generate a table
with parameter estimates. In case multiple models are
selected the table will show the results of each run in a
separate column.

Output stored in the analysis folder; fit results and specific
files in the shinyMixR folder

Overview of shinyMixR functionality

10 nlmixr development team

Fit Plots Scripts

It is possible to write your own scripts (See scripts folder and
scripts widget) that can be used to analyze model results.

The scripts can be used to process the result for one or multiple
models at once (the interface will include the name of the
selected models in the script).

The fit plots widget is used to generate
individual fit plots. The same plotting
options are present here as for the
goodness of fit plots.

Output stored in the analysis folder; scripts in the scripts
folder; fit results and specific files in the shinyMixR folder

Overview of shinyMixR functionality

11 nlmixr development team

Analysis results

Output from Scripts and Widgets (plots and tables) are
available in the Analysis results widget.

It is possible to save, view and combine the results from the
models within a project into an HTML or PDF (if LaTeX is
present) document.

Output stored in the analysis folder

Summary of shinyMixR

12

• The shinyMixR package is a graphical user interface (GUI) tool for managing
popPKPD projects with nlmixr as the estimation engine

• It structures your project – model, data, metadata, settings and results are kept
together and saves the results to disk

• The interface enables browsing between specific project folders

• The package has functionalities to view, edit, run, compare, analyze and report
nlmixr models

• Models are submitted in separate sessions – R can be used while running models

nlmixr development team

https://richardhooijmaijers.github.io/shinyMixR/index.html

https://richardhooijmaijers.github.io/shinyMixR/index.html

Back-up

nlmixr development team13

Create New Project (general) – via shinyMixR command line

14

1. Create a folder for your project (e.g., <ProjectFolder>)
2. Open R or RStudio and set the working directory to your project folder (e.g., <ProjectFolder>)

 Use setwd(), or
 via Rstudio: Session > Set working directory > Choose directory

3. On the command line or in a script run
 library(shinyMixR, quietly=TRUE)

 create_proj() (only needed once per project)

• By default, the folder structure is created within the current directory, if not present. The following folders are
created:
• analysis, data, models, scripts, shinyMixR

• Once there is a folder structure present, the interface can be started:

4. On the command line or in a script run
 library(shinyMixR, quietly=TRUE); run_shinymixr(launch.browser=TRUE)

 Note: other functions like run_nmx() can also be used directly on the command line or in a script to run models

• Start creating and running your models
• If needed, supplied Model(s) can be copied to the models folder
• If needed, supplied Data can be copied to the data folder

nlmixr development team

Return To Existing Project (general)

15

1. Click the shortcut (Windows, Mac or Linux specific)
 The shortcut should only be copied the first time you start using shinyMixR

2. The shinyMixR application opens

3. Browse to your project folder (e.g., <ProjectFolder>)

OR

1. Open R or Rstudio and set the working directory to your project folder (e.g., <ProjectFolder>)
 Use setwd(), or

 via RStudio: Session > Set working directory > Choose directory

2. On the command line or in a script run
 library(shinyMixR, quietly=TRUE)

 run_shinymixr(launch.browser=TRUE) if interface run in web browser

• The interface will open up showing all models previously stored in this directory.

nlmixr development team

Working with Multiple Locations using shinyMixR

16

• library(shinyMixR)

• # Create two different example projects:

• create_proj("./exampleA")

• create_proj("./exampleB")

• # It is also possible to define projects as absolute paths:

• # create_proj("C:/absolute/path/exampleC")

• # Work with shinyMixR in first location (working directory is automatically set to this location)

• run_shinymixr(wd="./exampleA",launch.browser=TRUE)

• # Work with shinyMixR in second location

• run_shinymixr(wd="./exampleB",launch.browser=TRUE)

• # Example for absolute paths

• # run_shinymixr(wd="C:/absolute/path/exampleC",launch.browser=TRUE)

nlmixr development team

Installation of shinyMixR

17

 To get started, first install the package using:

• devtools::install_github("richardhooijmaijers/shinyMixR")

 Be aware that the nlmixr, nlmixr.xpose and R3port package should be
installed before installing shinyMixR, e.g.:

• devtools::install_github("richardhooijmaijers/R3port")

• devtools::install_github("nlmixrdevelopment/nlmixr")

• devtools::install_github("nlmixrdevelopment/xpose.nlmixr")

nlmixr development team

Package Information for shinyMixR

18

shinyMixR is a shell around nlmixr and needs the package to fully operate:

• Running models is done using the nlmixr package (indirectly)

• Plotting is done using the xpose.nlmixr package (or ggplot2)

• Managing is done using the DT and collapsibleTree packages

• Editing is done using the shinyAce package

• Reporting is done using the R3port package

nlmixr development team

Package structure

19 nlmixr development team

• The interface is build using ui/server scripts as
done in other shiny apps

• Due to the size of the dashboard, widget modules
were created that are used by ui/server

• More generic functions are available that are
used by the interface as well as interactive usage

Differences between Interactive Session and Interface

20 nlmixr development team

Functionality only available in interface

• Export overview
• Adapt model meta data
• Edit, duplicate, create model
• Show progress of model runs
• Combine analysis results in report
• Run user created R template script

Functionality available in both

• View overview of available models
• View hierarchical overview
• Run models externally
• Create parameter table
• Create GOF plots
• Create fit plots

• Functionality only available in interface can be done in many cases indirectly in an interactive
session as well

• It is more user-friendly/quicker to perform certain tasks using the interface

• It is easy to switch between interface and interactive session

Workflow – via nlmixr

21 nlmixr development team

A model can be directly run in nlmixr:

1. Define model using the unified user interface.

2. Import, create and/or adapt the required data.

3. Use the nlmixr function to run the model.

run1 <- function() {

ini({

tka <- .5

tcl <- -3.2

tv <- -1

eta.ka ~ 1

eta.cl ~ 2

eta.v ~ 1

add.err <- 0.1

})

model({

ka <- exp(tka + eta.ka)

cl <- exp(tcl + eta.cl)

v <- exp(tv + eta.v)

linCmt() ~ add(add.err)

})

}

dat <- read.csv("data/data.csv")

fit <- nlmixr(run1, dat, est="saem")

Workflow – model diagnostics

22 nlmixr development team

High level results can be printed in console and default
plots can be created using nlmixr.

More elaborate plots can be generated using the
xpose.nlmixr package

Most important function is xpose_data_nlmixr which
transforms the nlmixr output to xpose format

Subsequently almost all xpose functions can be used to
create results for nlmixr output
Only a few functions are displayed, for more examples see:
https://uupharmacometrics.github.io/xpose/index.html

print(fit)

plot(fit)

xpdb <- xpose_data_nlmixr(fit)

dv_vs_idv(xpdb)

ipred_vs_idv(xpdb)

pred_vs_idv(xpdb)

dv_preds_vs_idv(xpdb)

dv_vs_pred(xpdb)

dv_vs_ipred(xpdb)

res_vs_idv(xpdb, res = 'CWRES')

res_vs_pred(xpdb, res = 'CWRES')

https://uupharmacometrics.github.io/xpose/index.html

Workflow – via shinyMixR command line

23 nlmixr development team

The model is defined in a separate file (run1.r) and
includes metadata used by the package

A model is submitted by default in a separate R session.
Plot functions are available to create xpose.nlmixr or
ggplot2 type plots

The interface can be started using a single function

show first part of model

cat(readLines("models/run1.r")[1:7],sep="\n")

run1 <- function() {

data = "theo_sd"

desc = "base model"

ref = ""

imp = 1

est = "nlme"

control<-list()

ini({

tka <- .5

tcl <- -3.2 ...

command line

run_nmx("run1")

res <- readRDS("shinyMixR/run1.res.rds")

gof_plot(fit)

fit_plot(res,type="user")

interface

run_shinymixr()

